874 resultados para GRAPHENE OXIDE SHEETS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

``Soggy sand'' electrolyte, which essentially consists of oxide dispersions in nonaqueous liquid salt solutions, comprises an important class of soft matter electrolytes. The ion transport mechanism of soggy sand electrolyte is complex. The configuration of particles in the liquid solution has been observed to depend in a nontrivial manner on various parameters related to the oxide (concentration, size, surface chemistry) and solvent (dielectric constant, viscosity) as well as time. The state of the particles in solution not only affects ionic conductivity but also effectively the mechanical and electrochemical properties of the solid liquid composite. Apart from comprehensive understanding of the underlying phenomena that govern ion transport, which will benefit design of better electrolytes, the problem has far-reaching implications in diverse fields such as catalysis, colloid chemistry, and biotechnology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon nanomaterials (CNMs), such as exfoliated graphene (EG), long-chain functionalized EG, single-walled carbon nanotubes (SWNTs), and fullerene (C-60), have been investigated for their interaction with two structurally different gelators based on all-trans tri-p-phenylenevinylene bis-aldoxime (1) and n-lauroyl-L-alanine (2) both in solution and in supramolecular organogels. Gelation occurs in toluene through hydrogen bonding and van der Waals interactions for 1 and 2 in addition to pp stacking specifically in the case of 1. These nanocomposites provide a thorough understanding in terms of molecular-level interactions of dimensionally different CNMs with structurally different gelators. The presence of densely wrapped CNMs encapsulated fibrous network in the resulting composites is evident from various spectroscopic and microscopic studies, indicating the presence of supramolecular interactions. Concentration- and temperature-dependent UV/Vis and fluorescence spectra show that CNMs promote aggregation of the gelator molecules, leading to hypochromism and quenching of the fluorescence intensity. Thermotropic mesophases of 1 are altered by the inclusion of a small amount of CNMs. The gelCNM composites show increased electrical conductivity compared with that of the native organogel. Rheological studies of the composites demonstrate the formation of rigid and viscoelastic solidlike assembly due to reinforced aggregation of the gelators on CNMs. Synergistic behavior is observed in case of the composite gel of 1, containing a mixture of EG and SWNT, when compared with other mixtures of CNMs in all combinations with EG. This affords new nanocomposites with interesting optical, thermal, electrical, and mechanical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first demonstration of metal-insulator-metal (MIM) capacitors with Eu2O3 dielectric for analog and DRAM applications. The influence of different anneal conditions on the electrical characteristics of the fabricated MIM capacitors is studied. FG anneal results in high capacitance density (7 fF/mu m(2)), whereas oxygen anneal results in low quadratic voltage coefficient of capacitance (VCC) (194 ppm/V-2 at 100 kHz), and argon anneal results in low leakage current density (3.2 x 10(-8) A/cm(2) at -1 V). We correlate these electrical results with the surface chemical states of the films through X-ray photoelectron spectroscopy measurements. In particular, FG anneal and argon anneal result in sub-oxides, which modulate the electrical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface-potential-based compact charge models for symmetric double-gate metal-oxide-semiconductor field-effect transistors (SDG-MOSFETs) are based on the fundamental assumption of having equal oxide thicknesses for both gates. However, for practical devices, there will always be some amount of asymmetry between the gate oxide thicknesses due to process variations and uncertainties, which can affect device performance significantly. In this paper, we propose a simple surface-potential-based charge model, which is applicable for tied double-gate MOSFETs having same gate work function but could have any difference in gate oxide thickness. The proposed model utilizes the unique so-far-unexplored quasi-linear relationship between the surface potentials along the channel. In this model, the terminal charges could be computed by basic arithmetic operations from the surface potentials and applied biases, and thus, it could be implemented in any circuit simulator very easily and extendable to short-channel devices. We also propose a simple physics-based perturbation technique by which the surface potentials of an asymmetric device could be obtained just by solving the input voltage equation of SDG devices for small asymmetry cases. The proposed model, which shows excellent agreement with numerical and TCAD simulations, is implemented in a professional circuit simulator through the Verilog-A interface and demonstrated for a 101-stage ring oscillator simulation. It is also shown that the proposed model preserves the source/drain symmetry, which is essential for RF circuit design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, we have reported theoretical studies on the rate of energy transfer from an electronically excited molecule to graphene. It was found that graphene is a very efficient quencher of the electronically excited states and that the rate infinity z(-4). The process was found to be effective up to 30 nm which is well beyond the traditional FRET limit. In this report, we study the transfer of an amount of energy (h) over bar Omega from a dye molecule to doped graphene. We find a crossover of the distance dependence of the rate from z(-4) to exponential as the Fermi level is increasingly shifted into the conduction band, with the crossover occurring at a shift of the Fermi level by an amount (h) over bar Omega/2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal oxide (TiO2, Pe(2)O(3), CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transition metal oxide (TiO2, Pe(2)O(3), CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step surfactant-based process. Nanoporous, high surface area compounds were obtained after calcination of the compounds. The catalysts were characterized by SEM, XRD, XPS, UV-vis and BET surface area analysis. The catalysts showed high activity for the photocatalytic degradation of both anionic and cationic dyes. The degradation of the dyes was described using Langmuir-Hinshelwood kinetics and the associated rate parameters were determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a novel and simple solution-based technique for depositing 2-D zinc oxide platelets at low temperature. Nanoplatelets that were mostly a-oriented associated with the Lotgering orientation factor of 0.65 were obtained by locating a glass substrate at a distance of about 5cm over the aqueous vapour of the boiling precursor. Experiments were carried out to optimize the coating parameters by placing the substrate at different positions, durations and the pH of the precursor. The X-ray diffraction studies confirmed the structure associated with the crystallites to be wurzite. The different morphology of the zinc oxide films and blue light emission were observed using scanning electron microscopy and fluorescence spectroscopy respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We observe an unusual tunneling magnetoresistance (TMR) phenomenon in a composite of La2/3Sr1/3MnO3 with CoFe2O4 where the TMR versus applied magnetic field loop suggests a ``negative coercive field.'' Tracing its origin back to a ``dipolar-biasing'' of La2/3Sr1/3MnO3 by CoFe2O4, we show that the TMR of even a single composite can be tuned continuously so that the resistance peak or the highest sensitivity of the TMR can be positioned anywhere on the magnetic field axis with a suitable magnetic history of the sample. This phenomenon of an unprecedented tunability of the TMR should be present in general in all such composites. (C) 2012 American Institute of Physics.http://dx.doi.org/10.1063/1.4731206]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A single-step magnetic separation procedure that can remove both organic pollutants and arsenic from contaminated water is clearly a desirable goal. Here we show that water dispersible magnetite nanoparticles prepared by anchoring carboxymethyl-beta-cyclodextrin (CMCD) cavities to the surface of magnetic nanoparticles are suitable host carriers for such a process. Monodisperse, 10 nm, spherical magnetite, Fe3O4, nanocrystals were prepared by the thermal decomposition of FeOOH. Trace amounts of antiferromagnet, FeO, present in the particles provides an exchange bias field that results in a high superparamagnetic blocking temperature and appreciable magnetization values that facilitate easy separation of the nanocrystals from aqueous dispersions on application of modest magnetic fields. We show here that small molecules like naphthalene and naphthol can be removed from aqueous media by forming inclusion complexes with the anchored cavities of the CMCD-Fe3O4 nanocrystals followed by separation of the nanocrystals by application of a magnetic field. The adsorption properties of the iron oxide surface towards As ions are unaffected by the CMCD capping so it too can be simultaneously removed in the separation process. The CMCD-Fe3O4 nanocrystals provide a versatile platform for magnetic separation with potential applications in water remediation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address a physically based analytical model of quantum capacitance (C-Q) in a bilayer graphene nanoribbon (BGN) under the application of an external longitudinal static bias. We demonstrate that as the gap (Delta) about the Dirac point increases, a phenomenological population inversion of the carriers in the two sets of subbands occurs. This results in a periodic and composite oscillatory behavior in the C-Q with the channel potential, which also decreases with increase in Delta. We also study the quantum size effects on the C-Q, which signatures heavy spatial oscillations due to the occurrence of van Hove singularities in the total density-of-states function of both the sets of subbands. All the mathematical results as derived in this paper converge to the corresponding well-known solution of graphene under certain limiting conditions and this compatibility is an indirect test of our theoretical formalism. (C) 2012 Elsevier By. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since it is difficult to find the analytical solution of the governing Poisson equation for double gate MOSFETs with the body doping term included, the majority of the compact models are developed for undoped-body devices for which the analytical solution is available. Proposed is a simple technique to included a body doping term in such surface potential based common double gate MOSFET models also by taking into account any differences between the gate oxide thickness. The proposed technique is validated against TCAD simulation and found to be accurate as long as the channel is fully depleted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We calculate the thermopower of monolayer graphene in various circumstances. We consider acoustic phonon scattering which might be the operative scattering mechanism in freestanding films and predict that the thermopower will be linear in any induced gap in the system. Further, the thermopower peaks at the same value of chemical potential (tunable by gate voltage) independent of the gap. We show that in the semiclassical approximation, the thermopower in a magnetic field saturates at high field to a value which can be calculated exactly and is independent of the details of the scattering. This effect might be observable experimentally. We also note that a Yukawa scattering potential can be used to fit experimental data for the thermopower for reasonable values of the screening length parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the influence of crystallographic texture on room temperature mechanical behavior of the sheets of the aluminum alloy AA7020 processed to different thicknesses. Three different thicknesses of the alloy sheet, namely 1, 1.85, and 3.6 mm, corresponding to different textures were investigated. Tensile tests were carried out at 0°, 45° and 90° with respect to sheet rolling direction and the resulting in-plane anisotropy in 0.2 proof stress, work hardening and plastic strain ratio (r-value) were determined. Texture derived r-values are also calculated and discussed vis-à -vis the experimentally obtained r-values. Finally the formability of the optimal alloy was studied using forming limit diagrams. Effect of natural aging, with a simulated heat treatment of 70 °C for 2 h on FLD was studied and compared with the as solutionized samples. It was observed that, the strain levels in the bi-axial region of the FLD were not much affected by the heat treatment. © 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the threshold voltage modeling of ultra-thin (1 nm-5 nm) silicon body double-gate (DG) MOSFETs using self-consistent Poisson-Schrodinger solver (SCHRED). We define the threshold voltage (V th) of symmetric DG MOSFETs as the gate voltage at which the center potential (Φ c) saturates to Φ c (s a t), and analyze the effects of oxide thickness (t ox) and substrate doping (N A) variations on V th. The validity of this definition is demonstrated by comparing the results with the charge transition (from weak to strong inversion) based model using SCHRED simulations. In addition, it is also shown that the proposed V t h definition, electrically corresponds to a condition where the inversion layer capacitance (C i n v) is equal to the oxide capacitance (C o x) across a wide-range of substrate doping densities. A capacitance based analytical model based on the criteria C i n v C o x is proposed to compute Φ c (s a t), while accounting for band-gap widening. This is validated through comparisons with the Poisson-Schrodinger solution. Further, we show that at the threshold voltage condition, the electron distribution (n(x)) along the depth (x) of the silicon film makes a transition from a strong single peak at the center of the silicon film to the onset of a symmetric double-peak away from the center of the silicon film. © 2012 American Institute of Physics.