955 resultados para Fuzzy multiobjective linear programming
Resumo:
This thesis presents the Fuzzy Monte Carlo Model for Transmission Power Systems Reliability based studies (FMC-TRel) methodology, which is based on statistical failure and repair data of the transmission power system components and uses fuzzyprobabilistic modeling for system component outage parameters. Using statistical records allows developing the fuzzy membership functions of system component outage parameters. The proposed hybrid method of fuzzy set and Monte Carlo simulation based on the fuzzy-probabilistic models allows catching both randomness and fuzziness of component outage parameters. A network contingency analysis to identify any overloading or voltage violation in the network is performed once obtained the system states. This is followed by a remedial action algorithm, based on Optimal Power Flow, to reschedule generations and alleviate constraint violations and, at the same time, to avoid any load curtailment, if possible, or, otherwise, to minimize the total load curtailment, for the states identified by the contingency analysis. For the system states that cause load curtailment, an optimization approach is applied to reduce the probability of occurrence of these states while minimizing the costs to achieve that reduction. This methodology is of most importance for supporting the transmission system operator decision making, namely in the identification of critical components and in the planning of future investments in the transmission power system. A case study based on Reliability Test System (RTS) 1996 IEEE 24 Bus is presented to illustrate with detail the application of the proposed methodology.
Resumo:
In basaltic dykes the magnetic lineation K1 (maximum magnetic susceptibility axis) is generally taken to indicate the flow direction during solidification of the magma. This assumption was tested in Tertiary basaltic dykes from Greenland displaying independent evidence of subhorizontal flow. The digital processing of microphotographs from thin sections cut in (K1, K2) planes yields the preferred linear orientation of plagioclase, which apparently marks the magma flow lineation. In up to 60% of cases, the angular separation between K1 and the assumed flow direction is greater than 45degrees. This suggests that the uncorroborated use of magnetic lineations in dykes is risky. A simple geometrical method is proposed to infer the flow vector from AMS in dykes based solely on magnetic foliations.
Resumo:
Chpater in Book Proceedings with Peer Review Second Iberian Conference, IbPRIA 2005, Estoril, Portugal, June 7-9, 2005, Proceedings, Part II
Resumo:
We use a simple model of associating fluids which consists of spherical particles having a hard-core repulsion, complemented by three short-ranged attractive sites on the surface (sticky spots). Two of the spots are of type A and one is of type B; the bonding interactions between each pair of spots have strengths epsilon(AA), epsilon(BB), and epsilon(AB). The theory is applied over the whole range of bonding strengths and the results are interpreted in terms of the equilibrium cluster structures of the phases. In addition to our numerical results, we derive asymptotic expansions for the free energy in the limits for which there is no liquid-vapor critical point: linear chains (epsilon(AA)not equal 0, epsilon(AB)=epsilon(BB)=0), hyperbranched polymers (epsilon(AB)not equal 0, epsilon(AA)=epsilon(BB)=0), and dimers (epsilon(BB)not equal 0, epsilon(AA)=epsilon(AB)=0). These expansions also allow us to calculate the structure of the critical fluid by perturbing around the above limits, yielding three different types of condensation: of linear chains (AA clusters connected by a few AB or BB bonds); of hyperbranched polymers (AB clusters connected by AA bonds); or of dimers (BB clusters connected by AA bonds). Interestingly, there is no critical point when epsilon(AA) vanishes despite the fact that AA bonds alone cannot drive condensation.
Resumo:
The aim of this paper is to develop models for experimental open-channel water delivery systems and assess the use of three data-driven modeling tools toward that end. Water delivery canals are nonlinear dynamical systems and thus should be modeled to meet given operational requirements while capturing all relevant dynamics, including transport delays. Typically, the derivation of first principle models for open-channel systems is based on the use of Saint-Venant equations for shallow water, which is a time-consuming task and demands for specific expertise. The present paper proposes and assesses the use of three data-driven modeling tools: artificial neural networks, composite local linear models and fuzzy systems. The canal from Hydraulics and Canal Control Nucleus (A parts per thousand vora University, Portugal) will be used as a benchmark: The models are identified using data collected from the experimental facility, and then their performances are assessed based on suitable validation criterion. The performance of all models is compared among each other and against the experimental data to show the effectiveness of such tools to capture all significant dynamics within the canal system and, therefore, provide accurate nonlinear models that can be used for simulation or control. The models are available upon request to the authors.
Resumo:
Screening of topologies developed by hierarchical heuristic procedures can be carried out by comparing their optimal performance. In this work we will be exploiting mono-objective process optimization using two algorithms, simulated annealing and tabu search, and four different objective functions: two of the net present value type, one of them including environmental costs and two of the global potential impact type. The hydrodealkylation of toluene to produce benzene was used as case study, considering five topologies with different complexities mainly obtained by including or not liquid recycling and heat integration. The performance of the algorithms together with the objective functions was observed, analyzed and discussed from various perspectives: average deviation of results for each algorithm, capacity for producing high purity product, screening of topologies, objective functions robustness in screening of topologies, trade-offs between economic and environmental type objective functions and variability of optimum solutions.
Resumo:
Amulti-residue methodology based on a solid phase extraction followed by gas chromatography–tandem mass spectrometry was developed for trace analysis of 32 compounds in water matrices, including estrogens and several pesticides from different chemical families, some of them with endocrine disrupting properties. Matrix standard calibration solutions were prepared by adding known amounts of the analytes to a residue-free sample to compensate matrix-induced chromatographic response enhancement observed for certain pesticides. Validation was done mainly according to the International Conference on Harmonisation recommendations, as well as some European and American validation guidelines with specifications for pesticides analysis and/or GC–MS methodology. As the assumption of homoscedasticity was not met for analytical data, weighted least squares linear regression procedure was applied as a simple and effective way to counteract the greater influence of the greater concentrations on the fitted regression line, improving accuracy at the lower end of the calibration curve. The method was considered validated for 31 compounds after consistent evaluation of the key analytical parameters: specificity, linearity, limit of detection and quantification, range, precision, accuracy, extraction efficiency, stability and robustness.
Resumo:
This paper presents a complete, quadratic programming formulation of the standard thermal unit commitment problem in power generation planning, together with a novel iterative optimisation algorithm for its solution. The algorithm, based on a mixed-integer formulation of the problem, considers piecewise linear approximations of the quadratic fuel cost function that are dynamically updated in an iterative way, converging to the optimum; this avoids the requirement of resorting to quadratic programming, making the solution process much quicker. From extensive computational tests on a broad set of benchmark instances of this problem, the algorithm was found to be flexible and capable of easily incorporating different problem constraints. Indeed, it is able to tackle ramp constraints, which although very important in practice were rarely considered in previous publications. Most importantly, optimal solutions were obtained for several well-known benchmark instances, including instances of practical relevance, that are not yet known to have been solved to optimality. Computational experiments and their results showed that the method proposed is both simple and extremely effective.
Resumo:
In recent years several countries have set up policies that allow exchange of kidneys between two or more incompatible patient–donor pairs. These policies lead to what is commonly known as kidney exchange programs. The underlying optimization problems can be formulated as integer programming models. Previously proposed models for kidney exchange programs have exponential numbers of constraints or variables, which makes them fairly difficult to solve when the problem size is large. In this work we propose two compact formulations for the problem, explain how these formulations can be adapted to address some problem variants, and provide results on the dominance of some models over others. Finally we present a systematic comparison between our models and two previously proposed ones via thorough computational analysis. Results show that compact formulations have advantages over non-compact ones when the problem size is large.
Resumo:
In the last two decades, there was a proliferation of programming exercise formats that hinders interoperability in automatic assessment. In the lack of a widely accepted standard, a pragmatic solution is to convert content among the existing formats. BabeLO is a programming exercise converter providing services to a network of heterogeneous e-learning systems such as contest management systems, programming exercise authoring tools, evaluation engines and repositories of learning objects. Its main feature is the use of a pivotal format to achieve greater extensibility. This approach simplifies the extension to other formats, just requiring the conversion to and from the pivotal format. This paper starts with an analysis of programming exercise formats representative of the existing diversity. This analysis sets the context for the proposed approach to exercise conversion and to the description of the pivotal data format. The abstract service definition is the basis for the design of BabeLO, its components and web service interface. This paper includes a report on the use of BabeLO in two concrete scenarios: to relocate exercises to a different repository, and to use an evaluation engine in a network of heterogeneous systems.
Resumo:
Several Web-based on-line judges or on-line programming trainers have been developed in order to allow students to train their programming skills. However, their pedagogical functionalities in the learning of programming have not been clearly defined. EduJudge is a project which aims to integrate the “UVA On-line Judge”, an existing on-line programming trainer with an important number of problems and users, into an effective educational environment consisting of the e-learning platform Moodle and the competitive learning tool QUESTOURnament. The result is the EduJudge system which allows teachers to apply different pedagogical approaches using a proven e-learning platform, makes problems easy to search through an effective search engine, and provides an automated evaluation of the solutions submitted to these problems. The final objective is to provide new learning strategies to motivate students and present programming as an easy and attractive challenge. EduJudge has been tried and tested in three algorithms and programming courses in three different Engineering degrees. The students’ motivation and satisfaction levels were analysed alongside the effects of the EduJudge system on students’ academic outcomes. Results indicate that both students and teachers found that among other multiple benefits the EduJudge system facilitates the learning process. Furthermore, the experi- ment also showed an improvement in students’ academic outcomes. It must be noted that the students’ level of satisfaction did not depend on their computer skills or their gender.
Resumo:
A repository of learning objects is a system that stores electronic resources in a technology-mediated learning process. The need for this kind of repository is growing as more educators become eager to use digital educa- tional contents and more of it becomes available. The sharing and use of these resources relies on the use of content and communication standards as a means to describe and exchange educational resources, commonly known as learning objects. This paper presents the design and implementation of a service-oriented reposi- tory of learning objects called crimsonHex. This repository supports new definitions of learning objects for specialized domains and we illustrate this feature with the definition of programming exercises as learning objects and its validation by the repository. The repository is also fully compliant with existing commu- nication standards and we propose extensions by adding new functions, formalizing message interchange and providing a REST interface. To validate the interoperability features of the repository, we developed a repository plug-in for Moodle that is expected to be included in the next release of this popular learning management system.
Resumo:
Managing programming exercises require several heterogeneous systems such as evaluation engines, learning objects repositories and exercise resolution environments. The coordination of networks of such disparate systems is rather complex. These tools would be too specific to incorporate in an e-Learning platform. Even if they could be provided as pluggable components, the burden of maintaining them would be prohibitive to institutions with few courses in those domains. This work presents a standard based approach for the coordination of a network of e-Learning systems participating on the automatic evaluation of programming exercises. The proposed approach uses a pivot component to orchestrate the interaction among all the systems using communication standards. This approach was validated through its effective use on classroom and we present some preliminary results.
Resumo:
In this study, efforts were made in order to put forward an integrated recycling approach for the thermoset based glass fibre reinforced polymer (GPRP) rejects derived from the pultrusion manufacturing industry. Both the recycling process and the development of a new cost-effective end-use application for the recyclates were considered. For this purpose, i) among the several available recycling techniques for thermoset based composite materials, the most suitable one for the envisaged application was selected (mechanical recycling); and ii) an experimental work was carried out in order to assess the added-value of the obtained recyclates as aggregates and reinforcement replacements into concrete-polymer composite materials. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified concrete-polymer composites with regard to unmodified materials. In the mix design process of the new GFRP waste based composite material, the recyclate content and size grade, and the effect of the incorporation of an adhesion promoter were considered as material factors and systematically tested between reasonable ranges. The optimization process of the modified formulations was supported by the Fuzzy Boolean Nets methodology, which allowed finding the best balance between material parameters that maximizes both flexural and compressive strengths of final composite. Comparing to related end-use applications of GFRP wastes in cementitious based concrete materials, the proposed solution overcome some of the problems found, namely the possible incompatibilities arisen from alkalis-silica reaction and the decrease in the mechanical properties due to high water-cement ratio required to achieve the desirable workability. Obtained results were very promising towards a global cost-effective waste management solution for GFRP industrial wastes and end-of-life products that will lead to a more sustainable composite materials industry.
Resumo:
In Distributed Computer-Controlled Systems (DCCS), a special emphasis must be given to the communication infrastructure, which must provide timely and reliable communication services. CAN networks are usually suitable to support small-scale DCCS. However, they are known to present some reliability problems, which can lead to an unreliable behaviour of the supported applications. In this paper, an atomic multicast protocol for CAN networks is proposed. This protocol explores the CAN synchronous properties, providing a timely and reliable service to the supported applications. The implementation of such protocol in Ada, on top of the Ada version of Real-Time Linux is presented, which is used to demonstrate the advantages and disadvantages of the platform to support reliable communications in DCCS.