905 resultados para Force transducers
Resumo:
This study aimed to determine whether: i) tethered-swimming can be used to identify the asymmetry during front crawl swimming style; ii) swimmers that perform unilateral breathing present greater asymmetry in comparison to others that use bilateral breathing; iii) swimmers of best performance present smaller asymmetry than their counterparts; iv) repeated front crawl swimming movements influence body asymmetry. 18 swimmers were assessed for propulsive force parameters (peak force, mean force, impulse and rate of force development) during a maximal front crawl tethered-swimming test lasting 2 min. A factorial analysis showed that propulsive forces decreased at the beginning, intermediate and end of the test (p<0.05), but the asymmetries were not changed at different instants of the test. When breathing preference (uni- or bilateral) was analyzed, asymmetry remained unchanged in all force parameters (p>0.05). When performance was considered (below or above mean group time), a larger asymmetry was found in the sub-group of lower performance in comparison to those of best performance (p<0.05). Therefore, the asymmetries of the propulsive forces can be detected using tethered-swimming. The propulsive forces decreased during the test but asymmetries did not change under testing conditions. Although breathing preference did not influence asymmetry, swimmers with best performance were less asymmetric than their counterparts. © Georg Thieme Verlag KG Stuttgart New York.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
The multiferroic behavior with ion modification using rare-earth cations on crystal structures, along with the insulating properties of BiFeO3 (BFO) thin films was investigated using piezoresponse force microscopy. Rare-earth-substituted BFO films with chemical compositions of (Bi 1.00-xRExFe1.00O3 (x=0; 0.15), RE=La and Nd were fabricated on Pt (111)/Ti/SiO2/Si substrates using a chemical solution deposition technique. A crystalline phase of tetragonal BFO was obtained by heat treatment in ambient atmosphere at 500 °C for 2 h. Ion modification using La3+ and Nd3+ cations lowered the leakage current density of the BFO films at room temperature from approximately 10-6 down to 10-8 A/cm2. The observed improved magnetism of the Nd3+ substituted BFO thin films can be related to the plate-like morphology in a nanometer scale. We observed that various types of domain behavior such as 71° and 180° domain switching, and pinned domain formation occurred. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cm Oe. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The performance of the optimal linear feedback control and of the state-dependent Riccati equation control techniques applied to control and to suppress the chaotic motion in the atomic force microscope are analyzed. In addition, the sensitivity of each control technique regarding to parametric uncertainties are considered. Simulation results show the advantages and disadvantages of each technique. © 2013 Brazilian Society for Automatics - SBA.
Resumo:
Poor posture control has been associated with an increased risk of falls and mobility disability among older adults. This study was conducted to assess the test-retest reliability and sensitivity to group differences regarding the time-limit (TLimit) of one-leg standing and selected balance parameters obtained with a force platform in older and young adults. A secondary purpose was to assess the relationship between TLimit and these balance parameters. Twenty-eight healthy older adults (age: 69±5years) and thirty young adults (age: 21±4years) participated in this study. Two one-leg stance tasks were performed: (1) three trials of 30s maximum and (2) one TLimit trial. The following balance parameters were computed: center of pressure area, RMS sway amplitude, and mean velocity and mean frequency in both the anterio-posterior and medio-lateral directions. All balance parameters obtained with the force platform as well as the TLimit variable were sensitive to differences in balance performance between older and young adults. The test-retest reliability of these measures was found to be acceptable (ICC: 0.40-0.85), with better ICC scores observed for mean velocity and mean frequency in the older group. Pearson correlations coefficients (r) between balance parameters and TLimit ranged from -0.16 to -0.54. These results add to the current literature that can be used in the development of measurement tools for evaluating balance in older and young adults. © 2013 Elsevier Ltd.
Resumo:
The degradation phenomena of ZnO and SnO2-based varistors were investigated for two different degradation methods: DC voltage at increased temperature and degradation with 8/20 μs pulsed currents (lightning type). Electrostatic force microscopy (EFM) was used to analyze the surface charge accumulated at grain-boundary regions before and after degradation. Before the degradation process, 85% of the barriers are active in the SnO2 system, while the ZnO system presents only 30% effective barriers. Both systems showed changes in the electrical behavior when degraded with pulses. In the case of the ZnO system, the behavior after pulse degradation was essentially ohmic due to the destruction of barriers (about 99% of the interfaces are conductive). After the degradation with 8/20 μs pulsed currents, the SnO2 system still presents nonohmic behavior with a significant decrease in the quantity of effective barriers (from 85% to 5%). However, when the degradation is accomplished with continuous current, the SnO2 system exhibits minimum variation, while the ZnO system degrades from 30% to 5%. This result indicates the existence of metastable defects of low concentration and/or low diffusion in the SnO2 system. High energy is necessary to degrade the barriers due to defect annihilation in the SnO2 system. © 2013 The American Ceramic Society.
Resumo:
Nanostructured films of dioctadecyldimethylammonium bromide (DODAB) and nickel tetrasulfonated phthalocyanine (NiTsPc) were layer-by-layer (LbL) assembled to achieve a synergistic effect considering the distinct properties of both materials. Prior to LbL growth, the effect of NiTsPc on the structure of DODAB vesicles in aqueous medium was investigated by differential scanning calorimetry (DSC). Therefore, DODAB/NiTsPc LbL films were prepared using NiTsPc at concentrations below and above the limit concentration of vesicle formation according to our DSC experiments. As a result, LbL films with distinct nanostructures were obtained, which were studied at micro and nanoscales by micro-Raman and atomic force microscopy, respectively. A linear growth of the LbL films was observed by ultraviolet-visible absorption spectroscopy. However, the bilayer thickness and the surface morphology of the LbL films were radically affected depending on NiTsPc concentration. The electrostatic interaction between DODAB and NiTsPc was identified via Fourier transform infrared (FTIR) absorption spectroscopy as the main driving force responsible for LbL growth. Because LbL films have been widely applied as transducers in sensing devices, DODAB/NiTsPc LbL films having distinct nanostructures were tested as proof-of-principle in preliminary sensing experiments toward dopamine detection using impedance spectroscopy (e-tongue system). The real capacitance vs. dopamine concentration curves were treated using Principal Component Analysis (PCA) and an equivalent electric circuit, revealing the role played by the LbL film nanostructure and the possibility of building calibration curves. © 2013 Elsevier B.V.
Resumo:
This study examined the effect of fast-velocity concentric isokinetic resistance training (FV) on the rate of force development (RFD) at early (<100 ms) and late phases (>100 ms) of rising muscle force. Nine men participated in a 6-week resistance training intervention for the lower body, and nine matched subjects participated as controls (CON). During concentric isokinetic (180°s-1) knee extension training, subjects were instructed to do each contraction 'as fast and forcefully as possible'. Maximal muscle strength (MVC) and RFD (0-10, 0-20, ..., 0-250 ms from the onset of contraction) were measured during maximal voluntary isometric contraction of the knee extensors (KE). There were no significant changes in MVC of KE in both groups after intervention (FV = 314·2 ± 101·1 versus 338·7 ± 88·0 N{bullet operator}m, P>0·05; CON = 293·3 ± 94·8 versus 280·0 ± 72·2 N{bullet operator}m, P>0·05). The RFD increased 39-71% at time intervals up to 90 ms from the onset of the contraction (P<0·05), whereas no change occurred at later time intervals. Similarly, relative RFD (i.e.%MVC{bullet operator}s-1) (RFDr) increased 33-56% at time intervals up to 70 ms from the onset of the contraction (P<0·05). It can be concluded that a short period of resistance training performed with concentric fast-velocity isokinetic muscle contractions is able to enhance RFD and RFDr obtained at the early phase of rising muscle force. © 2013 The Authors Clinical Physiology and Functional Imaging © 2013 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
Resumo:
The tapping mode is one of the mostly employed techniques in atomic force microscopy due to its accurate imaging quality for a wide variety of surfaces. However, chaotic microcantilever motion impairs the obtention of accurate images from the sample surfaces. In order to investigate the problem the tapping mode atomic force microscope is modeled and chaotic motion is identified for a wide range of the parameter's values. Additionally, attempting to prevent the chaotic motion, two control techniques are implemented: the optimal linear feedback control and the time-delayed feedback control. The simulation results show the feasibility of the techniques for chaos control in the atomic force microscopy. © 2012 IMechE.
Resumo:
Objective: To determine the mechanical characteristics of teardrop loop with and without helix fabricated using different metal alloy compositions (stainless steel and beta-titanium), submitted to different intensities of bends preactivation (0° and 40°), and with different cross-sectional dimension of the wire used to build these loops (0.017 x 0.025-in and 0.019 x 0.025-in). Methods: Eighty loops used to close spaces were submitted to mechanical tests. The magnitudes of horizontal force, the moment/force ratio, and the load/deflection ratio produced by the specimens were quantified. Loops were submitted to a total activation of 5.0 mm and the values were registered for each 1.0 mm of activation. For statistic data analysis, a analysis of variance was performed and a Tukey's Multiple Comparison test was used as supplement, considering a 5% level of significance. Results: In general, teardrop loops with helix produced lower magnitudes of horizontal force and load/deflection ratio, and higher moment/force ratio than teardrop loops without helix. Among all analyzed variables, metal alloy composition presented greater influence in the horizontal force and in the load/deflection ratio. The moment/force ratio showed to be more influenced by the preactivation of loops for space closure. © 2013 Dental Press Journal of Orthodontics.
Resumo:
Background: The present study aims to evaluate the effects of orthodontic movement (OM) on the periodontal tissues of rats with ligature-induced periodontal disease. Methods: Eighty-eight rats were divided into four groups: 1) negative control (sham operated); 2) periodontal disease; 3) OM; and 4) periodontal disease followed by OM (OMP). Rats were sacrificed 3 hours or 1, 3, or 7 days after OM commencement. Bone volume fraction (BVF) and bone mineral density (BMD) were assessed in hemimaxillae by microcomputed tomography analysis. Expression of the proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α were evaluated in gingival samples by quantitative polymerase chain reaction and enzyme-linked immunosorbent assay, and in the furcation region by immunohistochemistry analysis (IHC). Results: The OMP group had lower BVF and BMD levels compared to the other groups at day 7 (P <0.05). Maximum messenger ribonucleic acid expression of both cytokines was observed in the OMP group at day 1 (P <0.05). In the same period, all proteins were expressed in high levels for all test groups compared to the control group. The number of cells positive for IL-1β and TNF-α by IHC was highest in the OMP group at day 1, with progressive reduction thereafter. Conclusion: The results suggest that OM acts synergistically with periodontal disease in periodontal breakdown through upregulation of proinflammatory cytokines.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)