838 resultados para Feature Vector
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Let M2n+1 be a C(CPn) -singular manifold. We study functions and vector fields with isolated singularities on M2n+1. A C(CPn) -singular manifold is obtained from a smooth manifold M2n+1 with boundary in the form of a disjoint union of complex projective spaces CPn boolean OR CPn boolean OR ... boolean OR CPn with subsequent capture of a cone over each component of the boundary. Let M2n+1 be a compact C(CPn) -singular manifold with k singular points. The Euler characteristic of M2n+1 is equal to chi(M2n+1) = k(1 - n)/2. Let M2n+1 be a C(CPn)-singular manifold with singular points m(1), ..., m(k). Suppose that, on M2n+1, there exists an almost smooth vector field V (x) with finite number of zeros m(1), ..., m(k), x(1), ..., x(1). Then chi(M2n+1) = Sigma(l)(i=1) ind(x(i)) + Sigma(k)(i=1) ind(m(i)).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Since the beginning, some pattern recognition techniques have faced the problem of high computational burden for dataset learning. Among the most widely used techniques, we may highlight Support Vector Machines (SVM), which have obtained very promising results for data classification. However, this classifier requires an expensive training phase, which is dominated by a parameter optimization that aims to make SVM less prone to errors over the training set. In this paper, we model the problem of finding such parameters as a metaheuristic-based optimization task, which is performed through Harmony Search (HS) and some of its variants. The experimental results have showen the robustness of HS-based approaches for such task in comparison against with an exhaustive (grid) search, and also a Particle Swarm Optimization-based implementation.
Resumo:
In this paper we deal with the notion of regulated functions with values in a C*-algebra A and present examples using a special bi-dimensional C*-algebra of triangular matrices. We consider the Dushnik integral for these functions and shows that a convenient choice of the integrator function produces an integral homomorphism on the C*-algebra of all regulated functions ([a, b], A). Finally we construct a family of linear integral functionals on this C*-algebra.
Resumo:
In this work, studies aimed at evaluating the unification of concepts and theorems of vector analysis that contributed to the understanding of physical problems in a more comprehensive and more concise than using vector calculus. We study the electrodinamics with differential forms. Were also presented Maxwell's relations with formalism of differential forms in addition allowing formulation one more geometric and generalized. Another feature observed during the study of formalism presented was the possibility of it serving as a substitute to the tensor formalism
Resumo:
Techniques based on signal analysis for leak detection in water supply systems typically use long pressure and/or flow data series of variable length. This paper presents the feature extraction from pressure signals and their application to the identification of changes related to the onset of a leak. Example signals were acquired from an experimental laboratory circuit, and features were extracted from temporal domain and from transformed signals. Statistical analysis of features values and a classification method were applied. It was verified the feasibility of using feature vectors for distinguish data acquired in the absence or presence of a leak.
Resumo:
In this paper some aspects on chaotic behavior and minimality in planar piecewise smooth vector fields theory are treated. The occurrence of non-deterministic chaos is observed and the concept of orientable minimality is introduced. Some relations between minimality and orientable minimality are also investigated and the existence of new kinds of non-trivial minimal sets in chaotic systems is observed. The approach is geometrical and involves the ordinary techniques of non-smooth systems.