948 resultados para Fe-mn
Resumo:
The dilute magnetic semiconductor of Sn1-x-yMnxFeyO2 (0 <= x <= 0.10, 0 <= y <= 0.10) Were syhthesized with the hydrothermal method using SnCl4, Mn(CH3COO)(2) center dot 4H(2)O and FeCl3 center dot 6H(2)O as the raw materials. The structure, morphologies and magnetic properties of the sample were characterized via X-ray powder diffractometer(XRD), transmission electron microscopy(TEM), Raman spectrum and superconducting and quantum interference device(SQUIT), and Mossbeaur spectrum. No secondary phase was found in the XRD spectrum. The morphology of the samples is affected by the kind or the mount of transition metal. The local vibrating model-of Mn Positioned SnO2 sites was found in Raman spectrum. The measured magnetic results indicate that when x = 0.10, y = 0, the sample exhibits strong magnetization in low-temperature (5 K), but the magnetization decrease rapidly at room. temperature; In contrast, when x = 0, y = 0.1, the sample's magnetization and coercivity are both small, but being temperature independent. Mossbeaur spectra indicates that part of the Fe is ferromagnetic coupled, and the simulating results indicate that the ferromagnetic character is intrinsic.
Resumo:
Through layer-by-layer assembly, a series of undecatungstozincates monosubstituted by first-row transition metals, ZnW11M(H2O)O-39(n-) (M=Cr, Mn, Fe, Co, Ni, Cu. or Zn) were first successfully immobilized on a 4-aminobenzoic acid modified glassy carbon electrode surface. The electrochemical behaviors of these polyoxometalates were investigated. They exhibit some special properties in the films different from those in homogeneous aqueous solution. The Cu-centered reaction mechanism in the ZnW11Cu multilayer film was described. The electrocatalytic behaviors of these multilayer film electrodes to the reduction of H2O2 and BrO3- were comparatively studied.
Resumo:
Two series of mixed oxides, CoAlM and MgAlM (M = Cr, Mn, Fe, Co, Ni, Cu), were prepared by calcining their corresponding hydrotalcite-like compounds (HTLc). The ratio of Mg: Al: M (or Co: Al: hi) was 3:1:1. The catalytic activity of all samples for the reaction of NO + CO was investigated. The results showed that the activity of CoAlM was much higher than that of MgAlM. The structure and the property of redox were characterized by XRD and H-2-TPR. The results indicated that only MgO phase was observed after calcining MgAlM hydrotalcites, and the transition metals became more stable. The spinel-like phase appeared in all of CoAlM samples after the calcination, and the transition metals were changed to be more active, and easily reduced. The activities of three series of mixed oxides CoAlCu obtained from different preparation methods, different ratio of Co:Al: Cu and at different calcination temperatures, were studied in detail for proposing the mechanism of reaction. The ability of adsorption of NO and CO were investigated respectively for supporting the mechanism.
Resumo:
The electrochemical behavior of a series of undecatungstozincates monosubstituted by first-row transition metals, ZnW11M(H2O)O-39(n-) (M=Cr, Mn, Fe, Co, Ni, Cu or Zn), was investigated systematically and comparably in aqueous solutions by electrochemical and in situ UV-visible-near-IR spectroelectrochemical methods. These compounds exhibit not only successive reduction processes of the addenda atoms (W) in a negative potential range, but some of them also involve redox reactions originating from the substituted transition metals (M) such as the reduction of Fe-III and Cu-II at less negative potentials and the oxidation of Mn-II at a more positive potential. Some interesting results and phenomena, especially of the transition metals, were found for the first time. Moreover, possible reaction mechanisms are proposed based on the experimental results.