996 resultados para Family trees
Resumo:
This paper investigates the extent to which a biased transmission of educational endowments affects fertility. To this end, we devise a version of Becker’s family decision model that takes preference change into account. Specifically, we model education as an instrument that increases the autonomy (to prefer), and autonomy as an instrument of preference-change for household-structures. The empirical validity of the proposed model is examined for the European setting using the European Community Household Panel. In the context of the model, empirical findings imply the following. On the one hand, both preference for quantity and preference for bequest for each offspring (quality) increases with education, while preference for current consumption decreases. On the other hand, education is found to be negatively correlated with fertility, at a decreasing rate. Therefore, the paper provides a useful additional toolkit for public policy evaluation. It explains how public policies oriented toward the guarantee of personal freedoms, such as the expansion of education and autonomy, are likely to guarantee the same freedoms for subsequent generations.
Resumo:
Decision Trees need train samples in the train data set to get classification rules. If the number of train data was too small, the important information might be missed and thus the model could not explain the classification rules of data. While it is not affirmative that large scale of train data set can get well model. This Paper analysis the relationship between decision trees and the train data scale. We use nine decision tree algorithms to experiment the accuracy, complexity and robustness of decision tree algorithms. Some results are demonstrated.
Resumo:
[EN] Our objective was to determine antioxidant defence activity in healthy controls (HC) and healthy unaffected second-degree relatives of patients with early onset psychosis (HC-FHP),and to assess its relationship with familiar environment measured using the Family Environment Scale (FES). Methods: We included 82 HC and 14 HC-FHP aged between 9 and 17 years. Total antioxidant status,lipid peroxidation, antioxidant enzyme activities and glutathione levels were determined in blood samples. Results:There was a significant decrease in the total antioxidant level in the HC-FHP group compared with the HC group (OR = 2.94; p = 0.009), but no between-group differences in the Global Assessment of Functioning (GAF) scale scores. For the FES, the HC-FHP group had significantly higher scores in the cohesion (p = 0.007) and intellectual-cultural dimensions (p=0.025). After adjusting for these two FES dimensions, total antioxidant status remained significantly different between groups (OR = 10.86, p = 0.009).
Resumo:
Progress report for the Trees and Tweets, Digging into Data Challenge round 3, project.
Resumo:
Proteolytic enzymes have evolved several mechanisms to cleave peptide bonds. These distinct types have been systematically categorized in the MEROPS database. While a BLAST search on these proteases identifies homologous proteins, sequence alignment methods often fail to identify relationships arising from convergent evolution, exon shuffling, and modular reuse of catalytic units. We have previously established a computational method to detect functions in proteins based on the spatial and electrostatic properties of the catalytic residues (CLASP). CLASP identified a promiscuous serine protease scaffold in alkaline phosphatases (AP) and a scaffold recognizing a beta-lactam (imipenem) in a cold-active Vibrio AP. Subsequently, we defined a methodology to quantify promiscuous activities in a wide range of proteins. Here, we assemble a module which encapsulates the multifarious motifs used by protease families listed in the MEROPS database. Since APs and proteases are an integral component of outer membrane vesicles (OMV), we sought to query other OMV proteins, like phospholipase C (PLC), using this search module. Our analysis indicated that phosphoinositide-specific PLC from Bacillus cereus is a serine protease. This was validated by protease assays, mass spectrometry and by inhibition of the native phospholipase activity of PI-PLC by the well-known serine protease inhibitor AEBSF (IC50 = 0.018 mM). Edman degradation analysis linked the specificity of the protease activity to a proline in the amino terminal, suggesting that the PI-PLC is a prolyl peptidase. Thus, we propose a computational method of extending protein families based on the spatial and electrostatic congruence of active site residues.
Resumo:
As a basic tool of modern biology, sequence alignment can provide us useful information in fold, function, and active site of protein. For many cases, the increased quality of sequence alignment means a better performance. The motivation of present work is to increase ability of the existing scoring scheme/algorithm by considering residue–residue correlations better. Based on a coarse-grained approach, the hydrophobic force between each pair of residues is written out from protein sequence. It results in the construction of an intramolecular hydrophobic force network that describes the whole residue–residue interactions of each protein molecule, and characterizes protein's biological properties in the hydrophobic aspect. A former work has suggested that such network can characterize the top weighted feature regarding hydrophobicity. Moreover, for each homologous protein of a family, the corresponding network shares some common and representative family characters that eventually govern the conservation of biological properties during protein evolution. In present work, we score such family representative characters of a protein by the deviation of its intramolecular hydrophobic force network from that of background. Such score can assist the existing scoring schemes/algorithms, and boost up the ability of multiple sequences alignment, e.g. achieving a prominent increase (50%) in searching the structurally alike residue segments at a low identity level. As the theoretical basis is different, the present scheme can assist most existing algorithms, and improve their efficiency remarkably.
Resumo:
The molecular mechanics property is the foundation of many characters of proteins. Based on intramolecular hydrophobic force network, the representative family character underlying a protein’s mechanics property is described by a simple two-letter scheme. The tendency of a sequence to become a member of a protein family is scored according to this mathematical representation. Remote homologs of the WW-domain family could be easily designed using such a mechanistic signature of protein homology. Experimental validation showed that nearly all artificial homologs have the representative folding and bioactivity of their assigned family. Since the molecular mechanics property is the only consideration in this study, the results indicate its possible role in the generation of new members of a protein family during evolution.
Resumo:
The length-weight relationship and the diets of Clarias lazera were investigated between July 1981 and June 1982. About 450 specimens were examined. The standard lengths of the fish ranged from 8.5 cm to 42.2 cm. Significant differences were found between the standard lengths of the males and females with the latter slightly shorter. Somatic weights varied between 10 g to 502 g. Length-weight regression analysis gave a "b" value of 3.02 for both males and females combined; thus indicating an isometric growth. Analysis of the food in the stomachs showed that the fish is an omnivore although, it fed more on insects and fish than other food items