924 resultados para FREE-SURFACE
Resumo:
Vertical-cavity surface-emitting lasers (VCSELs) and microlenses can be used to implement free space optical interconnects (FSOIs) which do not suffer from the bandwidth limitations inherent in metallic interconnects. A comprehensive link equation describing the effects of both optical and electrical noise is introduced. We have evaluated FSOI performance by examining the following metrics: the space-bandwidth product (SBP), describing the density of channels and aggregate bandwidth that can be achieved, and the carrier-to-noise ratio (CNR), which represents the relative strength of the carrier signal. The mode expansion method (MEM) was used to account for the primary cause of optical noise: laser beam diffraction. While the literature commonly assumes an ideal single-mode laser beam, we consider the experimentally determined multimodal structure of a VCSEL beam in our calculations. It was found that maximum achievable interconnect length and density for a given CNR was significantly reduced when the higher order transverse modes were present in Simulations. However, the Simulations demonstrate that free-space optical interconnects are still a suitable solution for the communications bottleneck, despite the adverse effects introduced by transverse modes.
Resumo:
Patellofemoral pain (PFP) may be related to unfavorable knee joint loading. Delayed and/or reduced activity of vastus medialis obliquus (VMO) and different movement patterns have been identified in individuals with PFP in some studies, whereas other studies have failed to show a difference compared to non-affected controls. The discrepancy between study results may depend on the different tasks that have been investigated. No previous study has investigated these variables in postural responses to unpredictable perturbations in PFP. Whole body three dimensional kinematics and surface EMG of quadriceps muscles activation was studied in postural responses to unpredictable support surface translations in 17 women with PFP who were pain free at the time of testing, and 17 matched healthy controls. The results of the present study showed earlier onset of VMO activity and associated changes in kinematics to anterior platform translation in the PFP subjects. We suggest that the relative timing between the portions quadriceps muscles may be task specific and part of an adapted response in attempt to reduce knee joint loading. This learned response appears to remain even when the pain is no longer present.
Resumo:
During chronic inflammation and ageing, the increase in oxidative stress in both intracellular and extracellular compartments is likely to influence local cell functions. Redox changes alter the T-cell proteome in a quantitative and qualitative manner, and post-translational modifications to surface and cytoplasmic proteins by increased reactive species can influence T-cell function. Previously, we have shown that RA (rheumatoid arthritis) T-cells exhibit reduced ROS (reactive oxygen species) production in response to extracellular stimulation compared with age-matched controls, and basal ROS levels [measured as DCF (2',7'-dichlorofluorescein) fluorescence] are lower in RA T-cells. In contrast, exposing T-cells in vitro to different extracellular redox environments modulates intracellular signalling and enhances cytokine secretion. Together, these data suggest that a complex relationship exists between intra- and extra-cellular redox compartments which contribute to the T-cell phenotype.
Resumo:
A dry matrix application for matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) was used to profile the distribution of 4-bromophenyl-1,4-diazabicyclo(3.2.2)nonane-4-carboxylate, monohydrochloride (BDNC, SSR180711) in rat brain tissue sections. Matrix application involved applying layers of finely ground dry alpha-cyano-4-hydroxycinnamic acid (CHCA) to the surface of tissue sections thaw mounted onto MALDI targets. It was not possible to detect the drug when applying matrix in a standard aqueous-organic solvent solution. The drug was detected at higher concentrations in specific regions of the brain, particularly the white matter of the cerebellum. Pseudomultiple reaction monitoring imaging was used to validate that the observed distribution was the target compound. The semiquantitative data obtained from signal intensities in the imaging was confirmed by laser microdissection of specific regions of the brain directed by the imaging, followed by hydrophilic interaction chromatography in combination with a quantitative high-resolution mass spectrometry method. This study illustrates that a dry matrix coating is a valuable and complementary matrix application method for analysis of small polar drugs and metabolites that can be used for semiquantitative analysis.
Resumo:
This thesis is concerned with demonstrating how the visual representation of the sequence distribution of individual monomer units, of a polymer, that would be observed upon polymerisation, may be utilised in designing and synthesizing polymers with relatively low cell adhesion characteristics, The initial part of this thesis is concerned with demonstrating the use of a computer simulation technique, in illustrating the sequence distribution that would be observed upon the polymerisation of a set of monomers. The power of the computer simulation technique has been demonstrated through the simulation of the sequence distributions of some generic contact lens materials. These generic contact lens materials were chosen simply because in the field of biomaterials their compositions are amongst the most systematically regulated and they present a wide range of compositions. The validity of the computer simulation technique has been assessed through the synthesis and analysis of linear free-radical polymers at different conversions. Two main parameters were examined, that of composition and the number-average sequence lengths of individual monomer units, at various conversions. The polymers were synthesized through the solution polymerisation process. The monomer composition was determined by elemental analysis and 13C nuclear magnetic analysis (NMR). Number-average sequence lengths were determined exclusively through 13C NMR. Although the computer simulation technique provides a visual representation of the monomer sequence distribution up to 100% conversion, these assessments were made on linear polymers at a reasonably high conversion (above 50%) but below 100% conversion of ease for analysis. The analyses proved that the computer simulation technique was reasonably accurate in predicting the sequence distribution of monomer units, upon polymerisation, in the polymer.An approach has been presented which allows one to manipulate the use of monomers, with their reactivity ratios, thereby enabling us to design polymers with controlled sequence distributions.Hydrogel membranes, with relatively controlled sequence distributions and polymerised to 100% conversion, were synthesized to represent prospective biomaterials. Cell adhesion studies were used as a biological probe to investigate the susceptibility of the surface of these membranes to cell adhesion. This was necessary in order to assess the surface biocompatibility or biotolerance of these prospective biomaterials.
Resumo:
The literature relating to evaporation from single droplets of pure liquids and the drying of solution and slurry droplets, and of droplet sprays has been reviewed. The heat and mass transfer rates for individual droplets suspended in free-flight, were investigated using a specially-designed vertical wind tunnel, to simulate conditions in a spray drier. The technique represented a unique alternative method for investigating evaporation from unrestrained single droplets with variable residence times. The experiments covered droplets of pure liquid allowbreak (water, isopropanol) allowbreak and of significantly different solutions (sucrose, potassium sulphate) over a range of temperatures of 37oC to 97oC, initial concentrations of 5 to 40wt/wt% , and initial drop sizes of 2.8 to 4.6mm. Drop behaviour was recorded photographically and dried particles were examined by Scanning Electron Microscopy. Correlations were developed for mass transfer coefficients for pure water droplets in free-flight; (i) experiencing oscillations, rotation and deformation, Sh = -105 + 3.9 [Ta - Td/Tamb]0.18Re0.5Sc033 for Re approx. > 1380 (ii) when these movements had ceased or diminished, Sh = 2.0 + 0.71 [Ta - Td/Tamb]0.18Re0.5Sc033 for Re approx. < 1060. Data for isopropanol drops were correlated resonably well by these equations. The heat transfer data showed a similar transition range. The drying rate curves for drops of sucrose and potassium sulphate solution exhibited three distinct stages; an initial increase in the drying rate as drop temperature reduced to the wet-bulb temperature, a short constant-rate period and a falling-rate period characterised by formation of a crust which controlled the mass transfer rate. Due to drop perturbation the rates in the high Re number region were up to 5 times greater than predicted from theory for spherical droplets. In the case of sucrose solution a `skin' formed over the drop surface prior to crust formation. This provided an additional resistance to mass transfer and resulted in extended drying times and a smooth crust of low porosity. The relevance of the results to practical spray drying operations is discussed.
Resumo:
The primary objective of this research has been to investigate the interfacial phenomenon of protein adsorption in relation to the bulk and surface structure-property effect s of hydrogel polymers. In order to achieve this it was first necessary to characterise the bulk and surface properties of the hydrogels, with regard to the structural chemistry of their component monomers. The bulk properties of the hydrogels were established using equilibrium water content measurements, together with water-binding studies by differential scanning calorimetry (D.S.C.). Hamilton and captive air bubble-contact angle techniques were employed to characterise the hydrogel-water interface and from which by a mathematical derivation, the interfacial free energy (ðsw) and the surface free energy components (ð psv, ðdsv, ðsv) were obtained. From the adsorption studies using the radio labelled iodinated (125I) proteins of human serum albumin (H.S.A.) and human fibrinogen (H.Fb.), it was Found that multi-layered adsorption was occurring and that the rate and type of this adsorption was dependent on the physico-chemical behaviour of the adsorbing protein (and its bulk concentration in solution), together with the surface energetics of the adsorbent polymer. A potential method for the invitro evaluation of a material's 'biocompatibility' was also investigated, based on an empirically observed relationship between the adsorption of albumin and fibrinogen and the 'biocompatibility' of polymeric materials. Furthermore, some consideration was also given to the biocompatibility problem of proteinaceous deposit formation on hydrophilic soft' contact lenses and in addition a number of potential continual wear contact lens formulations now undergoing clinical trials,were characterised by the above techniques.
Resumo:
The production of composite particles using dry powder coating is a one-step, environmentally friendly, process for the fabrication of particles with targeted properties and favourable functionalities. Diverse functionalities, such flowability enhancement, content uniformity, and dissolution, can be developed from dry particle coating. In this review, we discuss the particle functionalities that can be tailored and the selection of characterisation techniques relevant to understanding their molecular basis. We address key features in the powder blend sampling process and explore the relevant characterisation techniques, focussing on the functionality delivered by dry coating and on surface profiling that explores the dynamics and surface characteristics of the composite blends. Dry particle coating is a solvent- and heat-free process that can be used to develop functionalised particles. However, assessment of the resultant functionality requires careful selection of sensitive analytical techniques that can distinguish particle surface changes within nano and/or micrometre ranges.
Resumo:
Widely tunable gain switching of a grating-coupled surface-emitting laser (GCSEL) has been demonstrated in a simple external cavity configuration for the first time. Pulse duration in range of 40-100ps and wavelength tuning over 100nm have been achieved. High power, tail-free optical pulses have been observed at 980nm.
Resumo:
A fluid mechanical and electrostatic model for the transport of solute molecules across the vascular endothelial surface glycocalyx layer (EGL) was developed to study the charge effect on the diffusive and convective transport of the solutes. The solute was assumed to be a spherical particle with a constant surface charge density, and the EGL was represented as an array of periodically arranged circular cylinders of like charge, with a constant surface charge density. By combining the fluid mechanical analyses for the flow around a solute suspended in an electrolyte solution and the electrostatic analyses for the free energy of the interaction between the solute and cylinders based on a mean field theory, we estimated the transport coefficients of the solute across the EGL. Both of diffusive and convective transports are reduced compared to those for an uncharged system, due to the stronger exclusion of the solute that results from the repulsive electrostatic interaction. The model prediction for the reflection coefficient for serum albumin agreed well with experimental observations if the charge density in the EGL is ranged from approximately -10 to -30 mEq/l.
Resumo:
Magnesian limestone is a key construction component of many historic buildings that is under constant attack from environmental pollutants notably by oxides of sulfur via acid rain, particulate matter sulfate and gaseous SO 2 emissions. Hydrophobic surface coatings offer a potential route to protect existing stonework in cultural heritage sites, however, many available coatings act by blocking the stone microstructure, preventing it from 'breathing' and promoting mould growth and salt efflorescence. Here we report on a conformal surface modification method using self-assembled monolayers of naturally sourced free fatty acids combined with sub-monolayer fluorinated alkyl silanes to generate hydrophobic (HP) and super hydrophobic (SHP) coatings on calcite. We demonstrate the efficacy of these HP and SHP surface coatings for increasing limestone resistance to sulfation, and thus retarding gypsum formation under SO/H O and model acid rain environments. SHP treatment of 19th century stone from York Minster suppresses sulfuric acid permeation.
Resumo:
Sulfonic acid functionalised periodic mesoporous organosilicas (PrSO3 H-PMOs) with tunable hydrophobicity were synthesised via a surfactant-templating route, and characterised by porosimetry, TEM, XRD, XPS, inverse gas chromatography (IGC) and ammonia pulse chemisorption. IGC reveals that incorporation of ethyl or benzyl moieties into a mesoporous SBA-15 silica framework significantly increases the non-specific dispersive surface energy of adsorption for alkane adsorption, while decreasing the free energy of adsorption of methanol, reflecting increased surface hydrophobicity. The non-specific dispersive surface energy of adsorption of PMO-SO3H materials is strongly correlated with their activity towards palmitic acid esterification with methanol, demonstrating the power of IGC as an analytical tool for identifying promising solid acid catalysts for the esterification of free fatty acids. A new parameter [-ΔGCNP-P], defined as the per carbon difference in Gibbs free energy of adsorption between alkane and polar probe molecules, provides a simple predictor of surface hydrophobicity and corresponding catalyst activity in fatty acid esterification. © 2014 Elsevier B.V.
Resumo:
Mg-Al hydrotalcite coatings have been grown on alumina via a novel alkali- and nitrate-free impregnation route and subsequent calcination and hydrothermal treatment. The resulting Mg-HT/AlO catalysts significantly outperform conventional bulk hydrotalcites prepared via co-precipitation in the transesterification of C-C triglycerides for fatty acid methyl ester (FAME) production, with rate enhancements increasing with alkyl chain length. This promotion is attributed to improved accessibility of bulky triglycerides to active surface base sites over the higher area alumina support compared to conventional hydrotalcites wherein many active sites are confined within the micropores. © 2014 The Royal Society of Chemistry.
Resumo:
The wettability of the (001), (100), and (011) crystallographic facets of macroscopic aspirin crystals has been experimentally investigated using a sessile drop contact angle (θ) method. θ for a nonpolar liquid was very similar for all three facets, though significant θ differences were observed for three polar probe liquids. The observed hydrophobicity of the (001) and (100) facets is ascribed to a reduced hydrogen bonding potential at these surfaces, whilst the observed hydrophilicity of facet (011) may be attributed to presence of surface carboxylic functionalities as confirmed by X-ray photoelectron spectroscopy (XPS). The dispersive component of the surface free energy (γ) was similar for all three facets (35 ± 2 mJ/m). The total surface energy, γs varied between 46 and 60 mJ/m due to significant variations in the polar/acid-base components of γ for all facets. Surface polarity as determined by γ measurements and XPS data were in good agreement, linking the variations in wettability to the concentration of oxygen containing surface functional groups. In conclusion, the wettability and the surface energy of a crystalline organic solid, such as aspirin, was found to be anisotropic and facet dependant, and in this case, related to the presence of surface carboxylic functionalities. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
Resumo:
During ageing an altered redox balance has been observed in both intracellular and extracellular compartments, primarily due to glutathione depletion and metabolic stress. Maintaining redox homeostasis is important for controlling proliferation and apoptosis in response to specific stimuli for a variety of cells. For T cells, the ability to generate specific response to antigen is dependent on the oxidation state of cell surface and cytoplasmic protein-thiols. Here we describe the effects of depleting intracellular glutathione concentration for T cell exofacial expression of thioredoxin 1 and IL-2 production, and have determined the distribution of Trx1 with ageing. Using buthionine sulfoximine to deplete intracellular glutathione in Jurkat T cells we show using Western blotting that cell surface thioredoxin-1 is lowered and that the response to the lectin phytohaemagglutinin measured by ELISA as IL-2 production is also decreased. Using flow cytometry we show that the distribution of Trx1 on primary CD4+ T cells is age-dependent, with lower surface Trx1 expression and greater variability of surface expression observed with age. Together these data suggest that a relationship exists between the intracellular redox compartment and exofacial surface. Redox imbalance may be important for impaired T cell function during ageing.