989 resultados para Er Stress
Resumo:
The objectives of this work were to caracterize the tropical maize germplasm and to compare the combining abilities of maize grain yield under different levels of environmental stress. A diallel was performed among tropical maize cultivars with wide adaptability, whose hybrid combinations were evaluated in two sowing dates, in two years. The significance of the environmental effect emphasized the environmental contrasts. Based on grain yield, the environments were classified as favorable (8,331 kg ha-1), low stress (6,637 kg ha-1), high stress (5,495 kg ha-1), and intense stress (2,443 kg ha-1). None of the genetic effects were significant in favorable and intense stress environments, indicating that there was low germplasm variability under these conditions. In low and high stresses, the specific combining ability effects (SCA) were significant, showing that the nonadditive genetic effects were the most important, and that it is possible to select parent pairs with breeding potential. SCA and grain yield showed significant correlations only between the closer environment pairs like favorable/low stress and high/intense stress. The genetic control of grain yield differed under contrasting stress environments for which maize cultivars with wide adaptability are not adequate.
Resumo:
Objectives: To compare upper lip frenulum reinsertion, bleeding, surgical time and surgical wound healing in frenectomies performed with the CO2 laser versus the Er, Cr:YSGG laser. Study design: A prospective study was carried out on 50 randomized pediatric patients who underwent rhomboidal resection of the upper lip frenulum with either the CO2 laser or the Er,Cr:YSGG laser. Twenty-five patients were assigned to each laser system. All patients were examined at 7, 14, 21 days and 4 months after the operation in order to assess the surgical wound healing. Results: Insertion of the frenulum, which was preoperatively located between the upper central incisors, migrated to the mucogingival junction as a result of using both laser systems in all patients. Only two patients required a single dose of 650 mg of paracetamol, one of either study group. CO2 laser registered improved intraoperative bleeding control results and shorter surgical times. On the other hand, the Er,Cr:YSGG laser achieved faster healing. Conclusions: Upper lip laser frenectomy is a simple technique that results in minimum or no postoperative swelling or pain, and which involves upper lip frenulum reinsertion at the mucogingival junction. The CO2 laser offers a bloodless field and shorter surgical times compared with the Er,Cr:YSGG laser. On the other hand, the Er,Cr:YSGG laser achieved faster wound healing.
Resumo:
The objective of this work was to determine physiological stress markers, neutrophil:lymphocyte ratio (N/L) and corticoid concentrations, in gestating sows under different cooling systems. A sprinkling cooling system (SS) and a system based on fan-assisted evaporative cellulose pad (PS) were used. SS showed higher N/L ratio (1.095) than PS (0.850). Corticoid concentrations showed high variability. Corticosteroids are more efficient short-term stress indicators while N/L ratio is a good medium and long-term stress indicator. According to N/L ratio, gestating sows under PS benefit from a higher level of welfare.
Resumo:
The importance of the lateral hypothalamus in the pursuit of reward has long been recognized. However, the hypothalamic neuronal network involved in the regulation of reward still remains partially unknown. Hypocretins (aka orexins) are neuropeptides synthesized by a few thousand neurons restricted to the lateral hypothalamus and the perifornical area. Compelling evidence indicates that hypocretin neurons receive inputs from sensory and limbic systems and drive hyper-arousal possibly through modulation of stress responses. Major advances have been made in the elucidation of the hypocretin involvement in the regulation of arousal, stress, motivation, and reward seeking, without clearly defining the role of hypocretins in addictionrelated behaviors. We have recently gathered substantial evidence that points to a previously unidentified role for hypocretin-1 in driving relapse for cocaine seeking through activation of brain stress pathways. Meanwhile, several authors published concordant observations rather suggesting a direct activation of the mesolimbic dopamine system. In particular, hypocretin-1 has been shown to be critically involved in cocaine sensitization through the recruitment of NMDA receptors in the ventral tegmental area. Overall, on can conclude from recent findings that activation of hypocretin/orexin neurons plays a critical role in the development of the addiction process, either by contributing to brain sensitization (which is thought to lead to the unmanageable desire for drug intake) or by modulating the brain reward system that, in coordination with brain stress systems, leads to a vulnerable state that may facilitate relapse for drug seeking behavior.
Resumo:
BACKGROUND: Diverse psychological factors are involved in the pathophysiology of stress. In order to devise effective intervention strategies, it is important to elucidate which factors play the most important role in the association between psychological stress and exacerbation of Crohn's disease (CD). We hypothesized that the association between perceived stress and exacerbation of CD would remain after removal of mood and anxiety components, which are largely involved in stress perception. METHODS: In all, 468 adults with CD were recruited and followed in different hospitals and private practices of Switzerland for 18 months. At inclusion, patients completed the Perceived Stress Questionnaire and anxiety and depression were assessed using the Hospital Anxiety and Depression Scale. During the follow-up, gastroenterologists assessed whether patients presented with a CD exacerbation. By means of binary logistic regression analysis, we estimated the factor by which one standard deviation of perceived stress would increase the odds of exacerbation of CD with and without controlling for anxiety and depression. RESULTS: The odds of exacerbation of CD increased by 1.85 times (95% confidence interval 1.43-2.40, P < 0.001) for 1 standard deviation of perceived stress. After removing the anxiety and depression components, the residuals of perceived stress were no longer associated with exacerbation of CD. CONCLUSIONS: The association between perceived stress and exacerbation of CD was fully attributable to the mood components, specifically anxiety and depression. Future interventional studies should evaluate the treatment of anxiety and depression as a strategy for potential prevention of CD exacerbations.
Resumo:
Under optimal non-physiological conditions of low concentrations and low temperatures, proteins may spontaneously fold to the native state, as all the information for folding lies in the amino acid sequence of the polypeptide. However, under conditions of stress or high protein crowding as inside cells, a polypeptide may misfold and enter an aggregation pathway resulting in the formation of misfolded conformers and fibrils, which can be toxic and lead to neurodegenerative illnesses, such as Alzheimer's, Parkinson's or Huntington's diseases and aging in general. To avert and revert protein misfolding and aggregation, cells have evolved a set of proteins called molecular chaperones. Here, I focussed on the human cytosolic chaperones Hsp70 (DnaK) and HspllO, and co-chaperone Hsp40 (DnaJ), and the chaperonin CCT (GroEL). The cytosolic molecular chaperones Hsp70s/Hspll0s and the chaperonins are highly upregulated in bacterial and human cells under different stresses and are involved both in the prevention and the reversion of protein misfolding and aggregation. Hsp70 works in collaboration with Hsp40 to reactivate misfolded or aggregated proteins in a strict ATP dependent manner. Chaperonins (CCT and GroEL) also unfold and reactivate stably misfolded proteins but we found that it needed to use the energy of ATP hydrolysis in order to evict over- sticky misfolded intermediates that inhibited the unfoldase catalytic sites. Ill In this study, we initially characterized a particular type of inactive misfolded monomeric luciferase and rhodanese species that were obtained by repeated cycles of freeze-thawing (FT). These stable misfolded monomeric conformers (FT-luciferase and FT-rhodanese) had exposed hydrophobic residues and were enriched with wrong ß-sheet structures (Chapter 2). Using FT-luciferase as substrate, we found that the Hsp70 orthologs, called HspllO (Sse in yeast), acted similarly to Hsp70 as were bona fide ATP- fuelled polypeptide unfoldases and was much more than a mere nucleotide exchange factor, as generally thought. Moreover, we found that HspllO collaborated with Hsp70 in the disaggregation of stable protein aggregates in which Hsp70 and HspllO acted as equal partners that synergistically combined their individual ATP-consuming polypeptide unfoldase activities to reactivate the misfolded/aggregated proteins (Chapter 3). Using FT-rhodanese as substrate, we found that chaperonins (GroEL and CCT) could catalytically reactivate misfolded rhodanese monomers in the absence of ATP. Also, our results suggested that encaging of an unfolding polypeptide inside the GroEL cavity under a GroES cap was not an obligatory step as generally thought (Chapter 4). Further, we investigated the role of Hsp40, a J-protein co-chaperone of Hsp70, in targeting misfolded polypeptides substrates onto Hsp70 for unfolding. We found that even a large excess of monomeric unfolded a-synuclein did not inhibit DnaJ, whereas, in contrast, stable misfolded a-synuclein oligomers strongly inhibited the DnaK-mediated chaperone reaction by way of sequestering the DnaJ co-chaperone. This work revealed that DnaJ could specifically distinguish, and bind potentially toxic stably aggregated species, such as soluble a-synuclein oligomers involved in Parkinson's disease, and with the help of DnaK and ATP convert them into from harmless natively unfolded a-synuclein monomers (chapter 5). Finally, our meta-analysis of microarray data of plant and animal tissues treated with various chemicals and abiotic stresses, revealed possible co-expressions between core chaperone machineries and their co-chaperone regulators. It clearly showed that protein misfolding in the cytosol elicits a different response, consisting of upregulating the synthesis mainly of cytosolic chaperones, from protein misfolding in the endoplasmic reticulum (ER) that elicited a typical unfolded protein response (UPR), consisting of upregulating the synthesis mainly of ER chaperones. We proposed that drugs that best mimicked heat or UPR stress at increasing the chaperone load in the cytoplasm or ER respectively, may prove effective at combating protein misfolding diseases and aging (Chapter 6). - Dans les conditions optimales de basse concentration et de basse température, les protéines vont spontanément adopter un repliement natif car toutes les informations nécessaires se trouvent dans la séquence des acides aminés du polypeptide. En revanche, dans des conditions de stress ou de forte concentration des protéines comme à l'intérieur d'une cellule, un polypeptide peu mal se replier et entrer dans un processus d'agrégation conduisant à la formation de conformères et de fibrilles qui peuvent être toxiques et causer des maladies neurodégénératives comme la maladie d'Alzheimer, la maladie de Parkinson ou la chorée de Huntington. Afin d'empêcher ou de rectifier le mauvais repliement des protéines, les cellules ont développé des protéines appelées chaperonnes. Dans ce travail, je me suis intéressé aux chaperonnes cytosoliques Hsp70 (DnaK) et HspllO, la co-chaperones Hsp40 (DnaJ), le complexe CCT/TRiC et GroEL. Chez les bactéries et les humains, les chaperonnes cytosoliques Hsp70s/Hspl 10s et les « chaperonines» sont fortement activées par différentes conditions de stress et sont toutes impliquées dans la prévention et la correction du mauvais repliement des protéines et de leur agrégation. Hsp70 collabore avec Hsp40 pour réactiver les protéines agrégées ou mal repliées et leur action nécessite de 1ATP. Les chaperonines (GroEL) déplient et réactivent aussi les protéines mal repliées de façon stable mais nous avons trouvé qu'elles utilisent l'ATP pour libérer les intermédiaires collant et mal repliés du site catalytique de dépliage. Nous avons initialement caractérisé un type particulier de formes stables de luciférase et de rhodanese monomériques mal repliées obtenues après plusieurs cycles de congélation / décongélation répétés (FT). Ces monomères exposaient des résidus hydrophobiques et étaient plus riches en feuillets ß anormaux. Ils pouvaient cependant être réactivés par les chaperonnes Hsp70+Hsp40 (DnaK+DnaJ) et de l'ATP, ou par Hsp60 (GroEL) sans ATP (Chapitre 2). En utilisant la FT-Luciferase comme substrat nous avons trouvé que HspllO (un orthologue de Hsp70) était une authentique dépliase, dépendante strictement de l'ATP. De plus, nous avons trouvé que HspllO collaborait avec Hsp70 dans la désagrégation d'agrégats stables de protéines en combinant leurs activités dépliase consommatrice d'ATP (Chapitre 3). En utilisant la FT-rhodanese, nous avons trouvé que les chaperonines (GroEL et CCT) pouvaient réactiver catalytiquement des monomères mal repliés en absence d'ATP. Nos résultats suggérèrent également que la capture d'un polypeptide en cours de dépliement dans la cavité de GroEL et sous un couvercle du complexe GroES ne serait pas une étape obligatoire du mécanisme, comme il est communément accepté dans la littérature (Chapitre 4). De plus, nous avons étudié le rôle de Hsp40, une co-chaperones de Hsp70, dans l'adressage de substrats polypeptidiques mal repliés vers Hsp70. Ce travail a révélé que DnaJ pouvait différencier et lier des polypeptide mal repliés (toxiques), comme des oligomères d'a-synucléine dans la maladie de Parkinson, et clairement les différencier des monomères inoffensifs d'a-synucléine (Chapitre 5). Finalement une méta-analyse de données de microarrays de tissus végétaux et animaux traités avec différents stress chimiques et abiotiques a révélé une possible co-expression de la machinerie des chaperonnes et des régulateurs de co- chaperonne. Cette meta-analyse montre aussi clairement que le mauvais repliement des protéines dans le cytosol entraîne la synthèse de chaperonnes principalement cytosoliques alors que le mauvais repliement de protéines dans le réticulum endoplasmique (ER) entraine une réponse typique de dépliement (UPR) qui consiste principalement en la synthèse de chaperonnes localisées dans l'ER. Nous émettons l'hypothèse que les drogues qui reproduisent le mieux les stress de chaleur ou les stress UPR pourraient se montrer efficaces dans la lutte contre le mauvais repliement des protéines et le vieillissement (Chapitre 6).
Resumo:
Purpose: Atheromatic plaque progression is affected, among others phenomena, by biomechanical, biochemical, and physiological factors. In this paper, the authors introduce a novel framework able to provide both morphological (vessel radius, plaque thickness, and type) and biomechanical (wall shear stress and Von Mises stress) indices of coronary arteries. Methods: First, the approach reconstructs the three-dimensional morphology of the vessel from intravascular ultrasound(IVUS) and Angiographic sequences, requiring minimal user interaction. Then, a computational pipeline allows to automatically assess fluid-dynamic and mechanical indices. Ten coronary arteries are analyzed illustrating the capabilities of the tool and confirming previous technical and clinical observations. Results: The relations between the arterial indices obtained by IVUS measurement and simulations have been quantitatively analyzed along the whole surface of the artery, extending the analysis of the coronary arteries shown in previous state of the art studies. Additionally, for the first time in the literature, the framework allows the computation of the membrane stresses using a simplified mechanical model of the arterial wall. Conclusions: Circumferentially (within a given frame), statistical analysis shows an inverse relation between the wall shear stress and the plaque thickness. At the global level (comparing a frame within the entire vessel), it is observed that heavy plaque accumulations are in general calcified and are located in the areas of the vessel having high wall shear stress. Finally, in their experiments the inverse proportionality between fluid and structural stresses is observed.
Resumo:
The objective of this work was to assess the effect of different periods of water stress before harvest of pepper-rosmarin (Lippia sidoides) on the contents of essential oil and flavonoids. The experiment was carried out during 270 days of cultivation, with drainage lysimeters, in a completely randomized block design with five treatments: 0, 2, 4, 6, and 8 days of water suppression before harvest, with four replicates. Fresh and dry matter yield, essential oil content, total flavonoids content, and water potential and temperature of leaves were determined. There was a decrease of approximately 50% in oil content and of 60% in total flavonoid content with the reduction of leaf water potential in 0.3 MPa. Essential oil is more sensitive to water stress than total flavonoids.
Resumo:
Calcineurin signaling plays diverse roles in fungi in regulating stress responses, morphogenesis and pathogenesis. Although calcineurin signaling is conserved among fungi, recent studies indicate important divergences in calcineurin-dependent cellular functions among different human fungal pathogens. Fungal pathogens utilize the calcineurin pathway to effectively survive the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making targeting calcineurin a promising antifungal drug development strategy. Here we summarize current knowledge on calcineurin in yeasts and filamentous fungi, and review the importance of understanding fungal-specific attributes of calcineurin to decipher fungal pathogenesis and develop novel antifungal therapeutic approaches.
Resumo:
Diabetes is a recognized risk factor for cardiovascular diseases and heart failure. Diabetic cardiovascular dysfunction also underscores the development of diabetic retinopathy, nephropathy and neuropathy. Despite the broad availability of antidiabetic therapy, glycemic control still remains a major challenge in the management of diabetic patients. Hyperglycemia triggers formation of advanced glycosylation end products (AGEs), activates protein kinase C, enhances polyol pathway, glucose autoxidation, which coupled with elevated levels of free fatty acids, and leptin have been implicated in increased generation of superoxide anion by mitochondria, NADPH oxidases and xanthine oxidoreductase in diabetic vasculature and myocardium. Superoxide anion interacts with nitric oxide forming the potent toxin peroxynitrite via diffusion limited reaction, which in concert with other oxidants triggers activation of stress kinases, endoplasmic reticulum stress, mitochondrial and poly(ADP-ribose) polymerase 1-dependent cell death, dysregulates autophagy/mitophagy, inactivates key proteins involved in myocardial calcium handling/contractility and antioxidant defense, activates matrix metalloproteinases and redox-dependent pro-inflammatory transcription factors (e.g. nuclear factor kappaB) promoting inflammation, AGEs formation, eventually culminating in myocardial dysfunction, remodeling and heart failure. Understanding the complex interplay of oxidative/nitrosative stress with pro-inflammatory, metabolic and cell death pathways is critical to devise novel targeted therapies for diabetic cardiomyopathy, which will be overviewed in this brief synopsis. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.
Resumo:
Antigen receptor-induced NF-kappaB activation depends on receptor-proximal and -distal signaling events. Two papers in this issue of Immunity demonstrate that PKC-dependent phosphorylation of CARMA1 is the critical molecular link that controls the activation of the IKK signalosome and NF-kappaB.
Resumo:
ABSTRACT: BACKGROUND: Plants are sessile and therefore have to perceive and adjust to changes in their environment. The presence of neighbours leads to a competitive situation where resources and space will be limited. Complex adaptive responses to such situation are poorly understood at the molecular level. RESULTS: Using microarrays, we analysed whole-genome expression changes in Arabidopsis thaliana plants subjected to intraspecific competition. The leaf and root transcriptome was strongly altered by competition. Differentially expressed genes were enriched in genes involved in nutrient deficiency (mainly N, P, K), perception of light quality, and responses to abiotic and biotic stresses. Interestingly, performance of the generalist insect Spodoptera littoralis on densely grown plants was significantly reduced, suggesting that plants under competition display enhanced resistance to herbivory. CONCLUSIONS: This study provides a comprehensive list of genes whose expression is affected by intraspecific competition in Arabidopsis. The outcome is a unique response that involves genes related to light, nutrient deficiency, abiotic stress, and defence responses.