994 resultados para Enzyme Stability


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this work was the immobilization of the enzyme Candida antarctica lipase B (CAL B) using the sol-gel method of immobilization and three different initiators of the polymerization reaction: one acid (HCl), one basic (NH4OH) and the other nucleophilic (HBr). Tetraethylorthosilicate was used as the silica precursor. The influence of the additive PEG 1500 on immobilization was assessed. The efficiency of the process was evaluated considering the esterification activity of the xerogels. The immobilization process provided enhanced thermal stability, storage and operational aspects relative to the free enzyme. Storage temperature proved one of the main variables to be considered in the process, with the xerogels stored under refrigeration showing better results in terms of residual activity (nearly 200 days with ≥ 90% residual activity of basic and nucleophilic xerogels) when compared with storage at ambient temperature (nearly 40 days). The results demonstrated the possibility of reuse of derivatives and a greater number of cycles (nine), considering a residual activity of 50%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AbstractThis work describes the development of a biosensor based on the tyrosinase enzyme (Tyr) for the determination of phenol (PHEN) in laboratory effluent samples derived from ammoniacal nitrogen analysis of the water samples from the Muquém dam in the city of Cariús, CE, using square-wave voltammetry (SWV). The electrode modification consisted of the immobilization of gold nanoparticles, multi-walled carbon nanotubes, cobalt phthalocyanine, and Tyr on a glassy carbon electrode. The electrolyte, pH, enzyme quantity, and voltammetric parameters were optimized to detect PHEN. The analytical curves presented a linear range from 4.97 × 10-6 mol L-1 to 6.10 × 10-5 mol L-1, and the detection limit (DL) and quantitation limit (QL) values were 4.81 × 10-6 mol L-1 and 4.97 × 10-6mol L-1, respectively. The repetition of measurements with the same biosensor and repetition for three other prepared biosensors exhibited a relative standard deviation (RSD) of 5.50 and 1.75%, respectively. The percentage recovery of PHEN in effluent samples varied from 86.40 to 105.04%. The stability of the biosensor was evaluated (at 21 days) with satisfactory results, showing 97.86% of the initial response. Moreover, the DL and recovery percentages agreed with the established values from CONAMA and ABNT, respectively. Thus, the electrode configuration developed seems a promising tool in the detection and quantification of PHEN in complex samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistance of fourteen Theobroma cacao clones to Phytophthora spp. was evaluated using stem inoculations on grafted seedlings. Concepts of phenotypic stability were used to interpret the results and to express horizontality of the resistance. The linear regression coefficient 'b', the determination coefficient (R²) and average lesion size were used to determine the level of horizontal resistance, the phenotypic stability and the predictability of all clones. The results indicated that clones P 7 and MA 15 present highest levels of horizontal resistance and stability, but with moderate predictability. Clones CAS 1 and CEPEC 13 were classified as those with high horizontal resistance, stability and predictability, while clones PA 30, UF 650 and SIAL 88 and EET 59 showed intermediate resistance and stability and high predictability. Clones SPA 17, OC 61, PA 150, SIAL 505, ICS 1 and R 41 presented high susceptibility and intermediate or low stability and moderate or high predictability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterobimetallic carbonyl compounds of the type [Fe(CO)4(HgX)2] (X= Cl, Br, I), which have metal-metal bonds, have been prepared in order to study their thermal stabilities as a function of the halogen coordinated to mercury atoms. The characterization of the above complexes was carried out by elemental analysis, IR and NMR spectroscopies. Their thermal behaviour has been investigated and the final product was identified by IR spectroscopy and by X-ray powder diffractogram.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pothomorphe umbellata (L.) known on Brazil as Caapeba has a number of popular medicinal use, and it has been studied in relation to its pharmacological activity. Peroxidase specific activity (units/mg protein) was evaluated in callus cell culture samples of the P.umbellata, grown in two different MS medium (media 1 and media 2), submitted to 16 hours photoperiod or kept in darkness. Cell growth rate curve showed that the best growth indices were observed when media 2 submitted to the photoperiod regime was used, followed by the same media kept in darkness (stress condition). The results obtained also showed that the cell culture grown under stress conditions (darkness) lead to high content of peroxidase enzyme (an increase of 700% was observed). Kinetic constant values of 3.3 mmol.L-1 and 2,8 sec-1 were obtained for kM and v max,, respectively, using guaiacol as enzyme substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stability constant (log beta) and thermodynamic parameters of Cd2+ complexes with sulfonamide and cephapirin were determined by Polarographic technique at pH = 7.30 ± 0.01 and µ = 1.0 M KNO3 at 250°C. The sulfonamides were sulfadiazine, sulfisoxazole, sulfamethaxazole, sulfamethazine, sulfathiazole, sulfacetamide and sulfanilamide used as primary ligands and cephapirin as secondary ligand. Cd2+ formed 1:1:1, 1:2:1 and 1:1:2 complexes. The nature of electrode processes were reversible and diffusion controlled. The stability constants and thermodynamic parameters (deltaG, deltaH and deltaS) were determined. The formation of the metal complexes has been found to be spontaneous, exothermic in nature, and entropically unfavourable at higher temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several papers have been described on the thermal stability of the sweetener, C12H19Cl3O8 (Sucralose). Nevertheless no study using thermoanalytical techniques was found in the literature. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC) and infrared spectroscopy, have been used to study the thermal stability and thermal decomposition of sweetener.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Direct torque control (DTC) is a new control method for rotating field electrical machines. DTC controls directly the motor stator flux linkage with the stator voltage, and no stator current controllers are used. With the DTC method very good torque dynamics can be achieved. Until now, DTC has been applied to asynchronous motor drives. The purpose of this work is to analyse the applicability of DTC to electrically excited synchronous motor drives. Compared with asynchronous motor drives, electrically excited synchronous motor drives require an additional control for the rotor field current. The field current control is called excitation control in this study. The dependence of the static and dynamic performance of DTC synchronous motor drives on the excitation control has been analysed and a straightforward excitation control method has been developed and tested. In the field weakening range the stator flux linkage modulus must be reduced in order to keep the electro motive force of the synchronous motor smaller than the stator voltage and in order to maintain a sufficient voltage reserve. The dynamic performance of the DTC synchronous motor drive depends on the stator flux linkage modulus. Another important factor for the dynamic performance in the field weakening range is the excitation control. The field weakening analysis considers both dependencies. A modified excitation control method, which maximises the dynamic performance in the field weakening range, has been developed. In synchronous motor drives the load angle must be kept in a stabile working area in order to avoid loss of synchronism. The traditional vector control methods allow to adjust the load angle of the synchronous motor directly by the stator current control. In the DTC synchronous motor drive the load angle is not a directly controllable variable, but it is formed freely according to the motor’s electromagnetic state and load. The load angle can be limited indirectly by limiting the torque reference. This method is however parameter sensitive and requires a safety margin between the theoretical torque maximum and the actual torque limit. The DTC modulation principle allows however a direct load angle adjustment without any current control. In this work a direct load angle control method has been developed. The method keeps the drive stabile and allows the maximal utilisation of the drive without a safety margin in the torque limitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clonal cleaning, followed by pre-immunization with protective complexes of Citrus tristeza virus(CTV), allowed the commercial cultivation of Pêra sweet orange, a variety that has great importance for Brazilian citriculture but is sensitive to the virus. The use of mild protective isolates in other citrus varieties, even those more tolerant to CTV, can also be of interest to prevent the spread of severe isolates. The aim of this study was to characterize, by means of SSCP (Single Strand Conformational Polymorphism) analysis of the coat protein gene, CTV isolates present in plants of the sweet orange cultivars Pêra, Hamlin and Valencia propagated from four budwood sources: 1) old lines, 2) nucellar lines, 3) shoot-tip-grafted lines, and 4) shoot-tip-grafted lines pre-immunized with the mild CTV protective isolate 'PIAC'. We also evaluated the correlation of the obtained SSCP patterns to stem pitting intensity, tree vigor and fruit yield. SSCP results showed low genetic diversity among the isolates present in different trees of the same variety and same budwood source and, in some cases, in different budwood sources and varieties. Considering tristeza symptoms, lower intensity was noted for plants of new, shoot-tip-grafted and pre-immunized shoot-tip-grafted lines, compared to old lines of the three varieties. The observed SSCP patterns and symptomatology suggested that more severe CTV complexes infect the plants of old lines of all three varieties. The protective complex stability was observed in the SSCP patterns of CTV isolates of some shoot-tip-grafted and pre-immunized clones. It was concluded that the changes detected in other electrophoretic profiles of this treatment did not cause loss of the protective capacity of CTV isolate 'PIAC' inoculated in the pre-immunization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One hundred different 5.5-year-old Eucalyptus grandis x Eucalyptus urophylla wood clones were cooked to kappa number 15-17.5 and the resulting kraft pulps oxygen-delignified to kappa 9.5-11.5 under fixed conditions, except for chemical charges. Thirteen samples showing large variations in effective alkali requirement, pulp yield and O-stage efficiency and selectivity were selected for brightness reversion studies. These samples were bleached to 90-91% ISO by DEDD and DEDP sequences and their brightness stability and chemical characteristics determined. Heat reversion of the eucalyptus kraft pulps was strongly influenced by the wood supply, with brightness loss varying in the range of 2.1-3.6 and 0.8-1.7 %ISO for ODEDD and ODEDP bleached pulps, respectively. Pulps bleached by the ODEDP sequence showed reversion values 1.3-1.9 % ISO lower than those bleached by the ODEDD sequence. Pulp carbonyl content decreased by 35-40% during the final peroxide bleaching stage. Carbonyl and carboxyl groups correlated positively with brightness reversion, as did permanganate number and acid soluble lignin. Pulp final viscosity and metal and DCM extractives contents showed no significant correlation with brightness reversion. Pulping, oxygen delignification and ECF bleaching performances also showed no correlation with brightness reversion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immobilization of Burkholderia cepacia Lipase: Kinetic Resolution in Organic Solvents, Ionic Liquids and in Their Mixtures Biocatalysis opens the door to green and sustainable processes in synthetic chemistry allowing the preparation of single enantiomers, since the enzymes are chiral and accordingly able to catalyze chemical reactions under mild conditions. Immobilization of enzymes enhances process robustness, often stabilizes and activates the enzyme, and enables reuse of the same enzyme preparation in multiple cycles. Although hundreds of variations of immobilization methods exist, there is no universal method to yield the highly active, selective and stable enzyme catalysts. Therefore, new methods need to be developed to obtain suitable catalysts for different substrates and reaction environments. Lipases are the most widely used enzymes in synthetic organic chemistry. The literature part together with the experimental part of this thesis discusses of the effects of immobilization methods mostly used to enhance lipase activity, stability and enantioselectivity. Moreover, the use of lipases in the kinetic resolution of secondary alcohols in organic solvents and in ionic liquids is discussed. The experimental work consists of the studies of immobilization of Burkholderia cepacia lipase (lipase PS) using three different methods: encapsulation in sol-gels, cross-linked enzyme aggregates (CLEAs) and supported ionic liquids enzyme catalysts (SILEs). In addition, adsorption of lipase PS on celite was studied to compare the results obtained with sol-gels, CLEAs and SILEs. The effects of immobilization on enzyme activity, enantioselectivity and hydrolysis side reactions were studied in kinetic resolution of three secondary alcohols in organic solvents, in ionic liquids (ILs), and in their mixtures. Lipase PS sol-gels were shown to be active and stable catalysts in organic solvents and solvent:IL mixtures. CLEAs and SILEs were highly active and enantioselective in organic solvents. Sol-gels and SILEs were reusable in several cycles. Hydrolysis side reaction was suppressed in the presence of sol-gels and CLEAs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present study was to demonstrate the wide applicability of the novel photoluminescent labels called upconverting phosphors (UCPs) in proximity-based bioanalytical assays. The exceptional features of the lanthanide-doped inorganic UCP compounds stem from their capability for photon upconversion resulting in anti-Stokes photoluminescence at visible wavelengths under near-infrared (NIR) excitation. Major limitations related to conventional photoluminescent labels are avoided, rendering the UCPs a competitive next-generation label technology. First, the background luminescence is minimized due to total elimination of autofluorescence. Consequently, improvements in detectability are expected. Second, at the long wavelengths (>600 nm) used for exciting and detecting the UCPs, the transmittance of sample matrixes is significantly greater in comparison with shorter wavelengths. Colored samples are no longer an obstacle to the luminescence measurement, and more flexibility is allowed even in homogeneous assay concepts, where the sample matrix remains present during the entire analysis procedure, including label detection. To transform a UCP particle into a biocompatible label suitable for bioanalytical assays, it must be colloidal in an aqueous environment and covered with biomolecules capable of recognizing the analyte molecule. At the beginning of this study, only UCP bulk material was available, and it was necessary to process the material to submicrometer-sized particles prior to use. Later, the ground UCPs, with irregular shape, wide size-distribution and heterogeneous luminescence properties, were substituted by a smaller-sized spherical UCP material. The surface functionalization of the UCPs was realized by producing a thin hydrophilic coating. Polymer adsorption on the UCP surface is a simple way to introduce functional groups for bioconjugation purposes, but possible stability issues encouraged us to optimize an optional silica-encapsulation method which produces a coating that is not detached in storage or assay conditions. An extremely thin monolayer around the UCPs was pursued due to their intended use as short-distance energy donors, and much attention was paid to controlling the thickness of the coating. The performance of the UCP technology was evaluated in three different homogeneous resonance energy transfer-based bioanalytical assays: a competitive ligand binding assay, a hybridization assay for nucleic acid detection and an enzyme activity assay. To complete the list, a competitive immunoassay has been published previously. Our systematic investigation showed that a nonradiative energy transfer mechanism is indeed involved, when a UCP and an acceptor fluorophore are brought into close proximity in aqueous suspension. This process is the basis for the above-mentioned homogeneous assays, in which the distance between the fluorescent species depends on a specific biomolecular binding event. According to the studies, the submicrometer-sized UCP labels allow versatile proximity-based bioanalysis with low detection limits (a low-nanomolar concentration for biotin, 0.01 U for benzonase enzyme, 0.35 nM for target DNA sequence).