1000 resultados para Electronic
Resumo:
Micro-electronic displays are sensitive devices and its performance is easily affected by external environmental factors. To enable the display to perform in extreme conditions, the device must be structurally strengthened, the effects of this packaging process was investigated. A thermo-mechanical finite element analysis was used to discover potential problems in the packaging process and to improve the overall design of the device. The main concern from the analysis predicted that displacement of the borosilicate glass and the Y stress of the adhesive are important. Using this information a design which reduced the variation of displacement and kept the stress to a minimum was suggested
Resumo:
In this paper the reliability of the isolation substrate and chip mountdown solder interconnect of power modules under thermal-mechanical loading has been analysed using a numerical modelling approach. The damage indicators such as the peel stress and the accumulated plastic work density in solder interconnect are calculated for a range of geometrical design parameters, and the effects of these parameters on the reliability are studied by using a combination of the finite element analysis (FEA) method and optimisation techniques. The sensitivities of the reliability of the isolation substrate and solder interconnect to the changes of the design parameters are obtained and optimal designs are studied using response surface approximation and gradient optimization method
Resumo:
In this paper, thermal cycling reliability along with ANSYS analysis of the residual stress generated in heavy-gauge Al bond wires at different bonding temperatures is reported. 99.999% pure Al wires of 375 mum in diameter, were ultrasonically bonded to silicon dies coated with a 5mum thick Al metallisation at 25degC (room temperature), 100degC and 200degC, respectively (with the same bonding parameters). The wire bonded samples were then subjected to thermal cycling in air from -60degC to +150degC. The degradation rate of the wire bonds was assessed by means of bond shear test and via microstructural characterisation. Prior to thermal cycling, the shear strength of all of the wire bonds was approximately equal to the shear strength of pure aluminum and independent of bonding temperature. During thermal cycling, however, the shear strength of room temperature bonded samples was observed to decrease more rapidly (as compared to bonds formed at 100degC and 200degC) as a result of a high crack propagation rate across the bonding area. In addition, modification of the grain structure at the bonding interface was also observed with bonding temperature, leading to changes in the mechanical properties of the wire. The heat and pressure induced by the high temperature bonding is believed to promote grain recovery and recrystallisation, softening the wires through removal of the dislocations and plastic strain energy. Coarse grains formed at the bonding interface after bonding at elevated temperatures may also contribute to greater resistance for crack propagation, thus lowering the wire bond degradation rate
Resumo:
The electric car, the all electric aircraft and requirements for renewable energy are examples of potential technologies needed to address the world problem of global warming/carbon emission etc. Power electronics and packaged modules are fundamental for the underpinning of these technologies and with the diverse requirements for electrical configurations and the range of environmental conditions, time to market is paramount for module manufacturers and systems designers alike. This paper details some of the results from a major UK project into the reliability of power electronic modules using physics of failure techniques. This paper presents a design methodology together with results that demonstrate enhanced product design with improved reliability, performance and value within acceptable time scales
Resumo:
This paper discusses the reliability of an IGBT power electronics module. This work is part of a major UK funded initiative into the design, packaging and reliability of power electronic modules. The predictive methodology combines numerical modeling techniques with experimentation and accelerated testing to identify failure modes and mechanisms for these type of power electronic module structures. The paper details results for solder joint failure substrate solder. Finite element method modeling techniques have been used to predict the stress and strain distribution within the module structures. Together with accelerated life testing, these results have provided a failure model for these joints which has been used to predict reliability of a rail traction application
Resumo:
High current density induced damages such as electromigration in the on-chip interconnection /metallization of Al or Cu has been the subject of intense study over the last 40 years. Recently, because of the increasing trend of miniaturization of the electronic packaging that encloses the chip, electromigration as well as other high current density induced damages are becoming a growing concern for off-chip interconnection where low melting point solder joints are commonly used. Before long, a huge number of publications have been explored on the electromigration issue of solder joints. However, a wide spectrum of findings might confuse electronic companies/designers. Thus, a review of the high current induced damages in solder joints is timely right this moment. We have selected 6 major phenomena to review in this paper. They are (i) electromigration (mass transfer due electron bombardment), (ii) thermomigration (mass transfer due to thermal gradient), (iii) enhanced intermetallic compound growth, (iv) enhanced current crowding, (v) enhanced under bump metallisation dissolution and (vi) high Joule heating and (vii) solder melting. the damage mechanisms under high current stressing in the tiny solder joint, mentioned in the review article, are significant roadblocks to further miniaturization of electronics. Without through understanding of these failure mechanisms by experiments coupled with mathematical modeling work, further miniaturization in electronics will be jeopardized
Resumo:
Assembly processes used to bond components to printed circuit boards can have a significant impact on these boards and the final packaged component. Traditional approaches to bonding components to printed circuit boards results in heat being applied across the whole board assembly. This can lead to board warpage and possibly high residual stresses. Another approach discussed in this paper is to use Variable Frequency Microwave (VFM) heating to cure adhesives and underfills and bond components to printed circuit boards. In terms of energy considerations the use of VFM technology is much more cost effective compared to convection/radiation heating. This paper will discuss the impact of traditional reflow based processes on flexible substrates and it will demonstrate the possible advantages of using localised variable frequency microwave heating to cure materials in an electronic package.
Resumo:
Future analysis tools that predict the behavior of electronic components, both during qualification testing and in-service lifetime assessment, will be very important in predicting product reliability and identifying when to undertake maintenance. This paper will discuss some of these techniques and illustrate these with examples. The paper will also discuss future challenges for these techniques.
Resumo:
The article consists of a PowerPoint presentation on integrated reliability and prognostics prediction methodology for power electronic modules. The areas discussed include: power electronics flagship; design for reliability; IGBT module; design for manufacture; power module components; reliability prediction techniques; failure based reliability; etc.
Resumo:
Embedded electronic systems in vehicles are of rapidly increasing commercial importance for the automotive industry. While current vehicular embedded systems are extremely limited and static, a more dynamic configurable system would greatly simplify the integration work and increase quality of vehicular systems. This brings in features like separation of concerns, customised software configuration for individual vehicles, seamless connectivity, and plug-and-play capability. Furthermore, such a system can also contribute to increased dependability and resource optimization due to its inherent ability to adjust itself dynamically to changes in software, hardware resources, and environment condition. This paper describes the architectural approach to achieving the goals of dynamically self-configuring automotive embedded electronic systems by the EU research project DySCAS. The architecture solution outlined in this paper captures the application and operational contexts, expected features, middleware services, functions and behaviours, as well as the basic mechanisms and technologies. The paper also covers the architecture conceptualization by presenting the rationale, concerning the architecture structuring, control principles, and deployment concept. In this paper, we also present the adopted architecture V&V strategy and discuss some open issues in regards to the industrial acceptance.
Resumo:
Heidegger famously identified Modernity with a technological leveling of being to a single order of a “standing reserve.” In a radically different tone, Gilles Deleuze articulated a single “plane of immanence” within which ontological distinctions between mind and body, God and world, interiority and exteriority become indiscernible. Taking such philosophical declarations as points of departure, this panel will consider how a collapse of ontological distinction emerged as a thematic and structural trope in literary and cinematic modernisms. We hope to consider how writers and film-makers of the 20th c. utilize the resources of their media to ask “the question of being” that troubled their philosophical contemporaries and heirs. In this vein, we will examine how these modernist ontologies of immanence describe the crisis of a subject saturated and eclipsed by a world which comprises her while also remaining strange or opaque. Papers will ask what is lost with the departure of a distinctly human sense of “being” and how the historical arrival of an alternative ontological order may be evident in the lived experience of modernity. In this sense, the relationship to departures and arrivals becomes the modern subject’s suspicion that he is unable to do either vis á vis the world.
Resumo:
The creation of my hypermedia work Index of Love, which narrates a love story as an archive of moments, images and objects recollected, also articulated for me the potential of the book as electronic text. The book has always existed as both narrative and archive. Tables of contents and indexes allow the book to function simultaneously as linear narrative and non-linear, searchable database. The book therefore has more in common with the so-called 'new media' of the 21st century than it does with the dominant 20th century media of film, video and audiotape, whose logic and mode of distribution are resolutely linear. My thesis is that the non-linear logic of new media brings to the fore an aspect of the book - the index - whose potential for the production of narrative is only just beginning to be explored. When a reader/user accesses an electronic work, such as a website, via its menu, they simultaneously experience it as narrative and archive. The narrative journey taken is created through the menu choices made. Within the electronic book, therefore, the index (or menu) has the potential to function as more than just an analytical or navigational tool. It has the potential to become a creative, structuring device. This opens up new possibilities for the book, particularly as, in its paper based form, the book indexes factual work, but not fiction. In the electronic book, however, the index offers as rich a potential for fictional narratives as it does for factual volumes. [ABSTRACT FROM AUTHOR]
Resumo:
This paper uses a case study approach to consider the effectiveness of the electronic survey as a research tool to measure the learner voice about experiences of e-learning in a particular institutional case. Two large scale electronic surveys were carried out for the Student Experience of e-Learning (SEEL) project at the University of Greenwich in 2007 and 2008, funded by the UK Higher Education Academy (HEA). The paper considers this case to argue that, although the electronic web-based survey is a convenient method of quantitative and qualitative data collection, enabling higher education institutions swiftly to capture multiple views of large numbers of students regarding experiences of e-learning, for more robust analysis, electronic survey research is best combined with other methods of in-depth qualitative data collection. The advantages and disadvantages of the electronic survey as a research method to capture student experiences of e-learning are the focus of analysis in this short paper, which reports an overview of large-scale data collection (1,000+ responses) from two electronic surveys administered to students using surveymonkey as a web-based survey tool as part of the SEEL research project. Advantages of web-based electronic survey design include flexibility, ease of design, high degree of designer control, convenience, low costs, data security, ease of access and guarantee of confidentiality combined with researcher ability to identify users through email addresses. Disadvantages of electronic survey design include the self-selecting nature of web-enabled respondent participation, which tends to skew data collection towards students who respond effectively to email invitations. The relative inadequacy of electronic surveys to capture in-depth qualitative views of students is discussed with regard to prior recommendations from the JISC-funded Learners' Experiences of e-Learning (LEX) project, in consideration of the results from SEEL in-depth interviews with students. The paper considers the literature on web-based and email electronic survey design, summing up the relative advantages and disadvantages of electronic surveys as a tool for student experience of e-learning research. The paper concludes with a range of recommendations for designing future electronic surveys to capture the learner voice on e-learning, contributing to evidence-based learning technology research development in higher education.