970 resultados para Electron donor strength
Resumo:
Ultraviolet and x-ray photoelectron spectroscopy have been employed to investigate the adsorption of methanol, ethanol, diethylether, acetaldehyde, acetone, methyl acetate and methylamine on surfaces of Fe, Ni and Cu. All these molecules adsorb molecularly at low temperatures (≤100 K). Lone pair orbitals of these molecules are stabilized on these metal surfaces (by 0·4–1·0eV) due to molecular chemisorption. The molecules generally undergo transformations as the temperature is raised to 120 K or above. The new species produced seems to depend on the metal surface. Some of the product species identified are methoxy species, formaldehyde and carbon monoxide in the case of methanol and methyl acetate, ethoxy species in the case of ethanol and 2-propanol in the case of acetone.
Resumo:
An experimental investigation dealing with the influence of stress path on the shear behaviour of a layered soil prepared in the laboratory is described. Specimens trimmed in vertical and horizontal directions have been sheared under three different stress paths in compression and extension tests. Either in compression or extension, the stress–strain behaviour of the specimens with both orientations was apparently the same, although the volume change behaviour was different. The effective stress parameters C′ and ′ were found to be unique and independent of the stress path and two principal orientations. However, the values of ′ in extension tests were 6–7° higher than those in compression tests.
Resumo:
Structural defects of three chloritoid minerals from distinet geologic melieu have been investigated by high resolution electron microscopy. X-ray powder and electron diffraction patterns indicate that the chloritoid from one geological source (A) is2M 1+2M2 monoclinic variant while those from another geological source (B) are 2M 2 monoclinic variants. In a typical one-dimensional lattice image of a crystal from sourceA, the 2M 2 matrix is broken by insertion of triclinic inter-growths. Another crystal with the 2M 2 matrix showed single, triple, quadruple and quintuple layers displaying an unusually high degree of disorder. Lattice images of 2M 2 monoclinic variants from sourceB yielded more homogeneous micrographs. The important finding from the present studies is that the chloritoid from sourceA is a severely disordered low-temperature intermediate phase in the conversion of the triclinic chloritoid to the high-temperature ordered monoclinic variants of sourceB. Severely disordered chloritoids, marking the beginning of low grade metamorphism, are generated as intermediates between the state of complete disordered arrangement towards the end of low grade metamorphism within the narrow stability range of 400°–500°C.
Resumo:
The crystal structure of 1,3-di benzyl -2 - (4,4-dimet hyl- 2,5- bist hioxocyclo hexylidene) imidazolidine (2) shows a twist of 80.8(5)' about the inter-ring bond, which has a length of 1.482(6) A. The near orthogonality of the donor and acceptor parts of this formal push-pull ethylene makes the structure approach that of a zwitterion, as evidenced by bond lengths indicating strong electron delocalization. The acceptor part approaches a vinylogous dithioate structure, the donor part an amidinium system. The U.V. spectrum shows an n + R and a R + R transition, at 51 1 and 41 7.5 nm, respectively; according to CNDO/S calculations these are located entirely in the [S-C-C-C-SI- part. Two bands at shorter wavelength are ascribed to transitions from combinations of the lone-pair orbitals on the sulphur atoms to a n* orbital in the [N-C-N] + part; this is facilitated by the near perpendicularity of the two parts of the molecule.
Resumo:
In this paper the kinematics of a curved shock of arbitrary strength has been discussed using the theory of generalised functions. This is the extension of Moslov’s work where he has considered isentropic flow even across the shock. The condition for a nontrivial jump in the flow variables gives the shock manifold equation (sme). An equation for the rate of change of shock strength along the shock rays (defined as the characteristics of the sme) has been obtained. This exact result is then compared with the approximate result of shock dynamics derived by Whitham. The comparison shows that the approximate equations of shock dynamics deviate considerably from the exact equations derived here. In the last section we have derived the conservation form of our shock dynamic equations. These conservation forms would be very useful in numerical computations as it would allow us to derive difference schemes for which it would not be necessary to fit the shock-shock explicitly.
Resumo:
Surface instability of a collisionless semi-infinite current carrying plasma is studied. The semi-infinite plasma bounded by a plane surface is under the influence of a high frequency (hf) field. There are two classes of surface modes. One is a normal extension of zero high frequency field and the other due entirely to the presence ofhf field. As expected, with the increase in thehf field, the growth rates of the surface instabilities decrease. There are regions defined by the electron drift velocityu where the unstable surface and bulk regions overlap. The interesting result is that unlike the bulk plasma, there is a stable region on theu-axis flanked by two unstable regions. The width of this stable region increases with the increase in the field strength.
Resumo:
Mannans are abundant plant polysaccharides found in the endosperm of certain leguminous seeds (guar gum galactomannan, GG; locust bean gum galactomannan, LBG), in the tuber of the konjac plant (konjac glucomannan, KGM), and in softwoods (galactoglucomannan, GGM). This study focused on the effects of the chemical structure of mannans on their film-forming and emulsion-stabilizing properties. Special focus was on spruce GGM, which is an interesting new product from forest biorefineries. A plasticizer was needed for the formation of films from mannans other than KGM and the optimal proportion was 40% (w/w of polymers) glycerol or sorbitol. Galactomannans with lower galactose content (LBG, modified GG) produced films with higher elongation at break and tensile strength. The mechanical properties of GG-based films were improved by decreasing the degree of polymerization of the polysaccharide with moderate mannanase treatments. The improvement of mechanical properties of GGM-based films was sought by blending GGM with each of poly(vinyl alcohol) (PVOH), corn arabinoxylan (cAX), and KGM. Adding other polymers increased the elongation at break of GGM blend films. The tensile strength of films increased with increasing amounts of PVOH and KGM, but the effect of cAX was the opposite. Dynamic mechanical analysis showed two separate loss modulus peaks for blends of GGM and PVOH, but a single peak for all other films. Optical and scanning electron microscopy confirmed good miscibility of GGM with cAX and KGM. In contrast, films blended from GGM and PVOH showed phase separation. GGM and KGM were mixed with cellulose nanowhiskers (CNW) to form composite films. Addition of CNW to KGM-based films induced the formation of fiberlike structures with lengths of several millimeters. In GGM-based films, rodlike structures with lengths of tens of micrometers were formed. Interestingly, the notable differences in the film structure did not appear to be related to the mechanical and thermal properties of the films. Permeability properties of GGM-based films were compared to those of films from commercial mannans KGM, GG, and LBG. GGM-based films had the lowest water vapor permeability when compared to films from other mannans. The oxygen permeability of GGM films was of the same magnitude as that of commercial polyethylene / ethylene vinyl alcohol / polyethylene laminate film. The aroma permeability of GGM films was low. All films were transparent in the visible region, but GGM films blocked the light transmission in the ultraviolet region of the spectra. The stabilizing effect of GGM on a model beverage emulsion system was studied and compared to that of GG, LBG, KGM, and cAX. In addition, GG was enzymatically modified in order to examine the effect of the degree of polymerization and the degree of substitution of galactomannans on emulsion stability. Use of GGM increased the turbidity of emulsions both immediately after preparation and after storage of up to 14 days at room temperature. GGM emulsions had higher turbidity than the emulsions containing other mannans. Increasing the storage temperature to +45 ºC led to rapid emulsion breakdown, but a decrease in storage temperature increased emulsion stability after 14 days. A low degree of polymerization and a high degree of substitution of the modified galactomannans were associated with a decrease in emulsion turbidity.
Resumo:
Microbes and their exopolysaccharides (EPS) can block xylem vessels, thereby increasing the hydraulic resistance and decreasing the vase life of cut flowers and foliage. Scanning electron microscopy (SEM) provides a powerful tool for investigation of bacteria-induced xylem occlusion. However, conventional preparation protocols for SEM involving chemicals can cause loss of hydrated EPS material, and thereby damage the bacterial biofilms during dehydration. A modified chemical fixation protocol involving pre-fixation with 75 mM lysine plus 2.5% glutaraldehyde followed by the normal fixation in 3% glutaraldehyde was, therefore, tested for improved preservation of bacterial biofilm at the stem-ends of cut Acacia holosericea foliage stems. Stem-end segments with different stages of bacterial growth were obtained from stems stood into water. The lysine-based protocol was compared with four other processing protocols of critical point drying (CPD) without fixation (control), freeze-drying (FD), conventional chemical fixation followed by drying with hexamethyldisilazane (HMDS), and conventional chemical fixation with CPD. The non-fixed control. FD and the glutaraldehyde fixation with HMDS drying gave poor preservation of hydrated material, including bacterial EPS. Conventional glutaraldehyde fixation followed by CPD was superior to these three methods in terms of better preserving the EPS. However, this fourth method gave condensation of biofilms during dehydration. In contrast, the modified lysine-based protocol resulted in superior preservation of EPS and biofilm structure. Thus, this fifth method was the most appropriate for examination of bacterial stem-end blockage in cut ornamentals. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Adsorption of CO has been investigated on the surfaces of polycrystalline transition metals as well as alloys by employing electron energy loss spectroscopy (eels) and ultraviolet photoelectron spectroscopy (ups). CO adsorbs on polycrystalline transition metal surfaces with a multiplicity of sites, each being associated with a characteristic CO stretching frequency; the relative intensities vary with temperature as well as coverage. Whilst at low temperatures (80- 120 K), low coordination sites are stabilized, the higher coordination sites are stabilized at higher temperatures (270-300 K). Adsorption on surfaces of polycrystalline alloys gives characteristic stretching frequencies due to the constituent metal sites. Alloying, however, causes a shift in the stretching frequencies, indicating the effect of the band structure on the nature of adsorption. The up spectra provide confirmatory evidence for the existence of separate metal sites in the alloys as well as for the high-temperature and low-temperature phases of adsorbed CO.
Resumo:
Donor doped BaTiO3 ceramics become insulating5 under controlled conditions with effective dielectric constants >10. The changes in EPR signals indicate that a certain fraction of the donor doped BaTiO3 is cubic even at room temperature and that the cubic fraction increases with the donor content. X-ray powder diffraction data support the EPR results. The coexistence of both the phases over a range of temperature is characteristic of diffused phase transition. The effect of grain size variation on EPR signal intensities indicate that the boundary layers surrounding the grains may constitute the cubic phase as a result of higher Ba-vacancies and donor contents at the grain boundary layer than in the bulk. Since the acceptor states arising from the Ba-vacancies and the impurities are activated in the cubic phase, they capture electrons from the conduction band, rendering the cubic phase electrically more insulating than the semiconductive tetragonal grain interiors. Thus, the cubic grain boundary layers act as effective dielectric media where the field tends to concentrate.
Resumo:
Oxygen is shown to adsorb molecularly on gold as well as on Ag and Pt. UV and X-ray photoelectron spectroscopy and Auger electron spectroscopy have been employed to investigate electron states of molecularly adsorbed oxygen.
Resumo:
The perturbation treatment previously given is extended to explain the process of hydrogen abstraction from the various hydrogen donor molecules by the triplet nπ* state of ketones or the ground state of the alkyl or alkoxy radical. The results suggest that, as the ionization energy of the donor bonds is decreased, the reaction is accelerated and it is not influenced by the bond strength of the donor bonds. The activation barrier in such reactions arises from a weakening of the charge resonance term as the ionization energy of the donor bond increases.
Resumo:
A semiconductor with almost overlapping conduction bands b and c is considered. It is found that an attractive interaction leading to superconductivity can be induced between electrons in the conduction band b by a strong radiation field of monochromatic photons whose energy differs slightly from the band gap Ebc. The mechanism is the exchange of a photon and a phonon between the interacting electrons and the interaction is found to be proportional to the photon density.
Resumo:
Spatial dimensionality affects the degree of confinement when an electron-hole pair is squeezed from one or more dimensions approaching the bulk exciton Bohr radius (alpha(B)) limit. The etectron-hole interaction in zero-dimensional (0D) dots, one-dimensional (1D) rods/wires, and two-dimensional (2D) wells/sheets should be enhanced by the increase in confinement dimensions in the order 0D > 1D > 2D. We report the controlled synthesis of PbS nanomateriats with 0D, 1D, and 2D forms retaining at least one dimension in the strongly confined regime far below alpha(B) (similar to 10 nm for PbS) and provide evidence through varying the exciton-phonon coupling strength that the degree of confinement is systematically weakened by the loss of confinement dimension. Geometry variations show distinguishable far-field optical polarizations, which could find useful applications in polarization-sensitive devices.