999 resultados para Electrochemical doping
Resumo:
Transfer behaviors across the water/nitrobenzene interface were studied for five choline derivatives by chronopotentiometry with linear current scanning, cyclic voltammetry and differential pulse voltammetry. The irreversible hydrolysis reactions coupled to the phase transfer of ions across the water/nitrobenzene interface were observed. The Gibbs energies of the transfer of choline derivatives show the effects of an additive constitution on hydrophobic property of the medicine.
Resumo:
A novel doping phenomenon of fully reduced polyaniline and poly-o-methyl-aniline, "light-assisted oxidative doping", was found for the first time. The doping reaction was followed by FTIR, UV-VIS, ESR and electrical conductivity measurements. It was shown that the fully reduced polyanilines in the form of HCl-salts undergo a spontaneous transition from an insulator or semiconductor to a conductor when exposed to air and light, and their final molecular chain structures are analogous to those found in HCl-doped common polyanilines.
Resumo:
The reactions of polyaniline and poly-omicron-methylaniline of different oxidation degrees with I2 were followed by FTIR and electrical conductivity measurements. The results showed that the reaction of common polyanilines with I2 was oxidation in nature whereas that of the fully reduced ones was doping. The latter took place in two steps: oxidation of benzene-diamine units into quinone-diimine units (redox between I2 and the polymer chain) and formation of a conjugated system consisting of four aromatic rings (intramolecular chain redox).
Resumo:
The dispersion of alumina particles on a glassy-carbon surface serving as a modified electrode significantly enhances the amperometric detection of cysteine and glutathione following liquid chromatography. With an applied potential of 0.8 V vs. SCE, the detection limits were 1.2 ng for cysteine and 8 ng for glutathione and the electrode response was linear up to 600 ng for cysteine and 1.8-mu-g for glutathione. The modified electrode displayed high sensitivity and stability and was easy and inexpensive to prepare.
Resumo:
The potential-response of a microdisk electrode made with a chloride-doped polypyrrole (PPY) film on a carbon fibre (CF) has been examined. The effect of the polymerization conditions on the response characteristics is discussed. The optimum conditions for preparing the electrode are: cycling potential from +0.8 to +1.0 V in 0.1-0.2M pyrrole (Py) containing 0.1M LiCl, electropolymerization time 15-20 min. The electrode gives a Nernstian response of 56-58 mV/pCl and a detection limit of 3.6 x 10(-5)M chloride. It has the advantages of low resistance, short conditioning time and fast response. It has been used satisfactorily for detection of chloride in serum.
Resumo:
The potential windows of the system water/pure solvent (W/P) and water/solvent mixtures(W/S) have been investigated by cyclic voltammetry with solvents whose dielectric constants lie between 5.87 and 34.82. In the presence of LiCI in the aqueous phase and tetrabutytammoniumtetraphenylborate(TBATPB) in the organic phase, the systems water/allyl iso-thiocyanate (W/AIT) and water/nitrobensene (W/NB) show a same wide epotential window. thermodynamic parameters of ion transfer W/AIT interface were determined. In systems of W/P and V/S the influence solvent effect on the standard gibbs energies of transfer of was discussed.
Resumo:
Electrochemical transfer behavier of the V~vMo_(11)-V_5~vMo_7 heteropolyanions at the water/nitrobenzene interface has been investigated by using cyclic voltammetry. The effect of the solution acidity on the transfer behavior and the stable pH range of heteropolyanions were observed. Mixed melybdovanadate anions are more stable than 12-molybdophosphoric acid, however, the stability of the former decreases with increasing number of vanadium atoms. The main transfer species within the "potential window" has t...
Resumo:
The electrochemical behavior of Alizarin Red S(ARS) on GC electrode has been studied in acidic condition by spectroelectrochemistry with LOPTLC. It was found that there are three electrochemical reactions and followed by a chemical reaction of ARS in the potential range of 1.00——0.60V. The mechanism of electrode reactions has been studied and suggested based on the informations obtained from electrochemical and insitu spectroelectrochemical experiments.