872 resultados para Earning Gap
Resumo:
The new intemationalization of the field of hospitality management has led to increased opportunities in the Russian Federation. At the same time, there are major challenges to be overcome. This article describes what needs to be accomplished to be successful at business in this New World Order.
Resumo:
The relationship between trade policy and productivity growth is regarded as ambiguous in the literature. This dissertation examines under what condition the relationship would be positive (or negative). Through the use of static and dynamic analysis, we find two conflicting effects (the pro-protection effect and the pro-competitive effect) that cause the relationship to be ambiguous. If there exists a productivity gap between the import-competing and foreign industries, and if the level of protection is low (high), the relationship is positive (negative). We also show that the import-competing firm responds to a change in the protection level by choosing a level of investment in innovation which yields a different rate of productivity growth. The policy implication, therefore, is that a trade-policy maker should set the trade protection at a level which induces the firm to choose the highest rate of productivity growth, and, as a result, leading the firm to close the initial productivity gap in the most efficient way. ^
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
Acknowledgments This work was supported by the University of Konstanz, Germany. The first author was supported by a fellowship of the Swiss National Science Foundation (Fellowship P2ZHP1_155103).
Resumo:
In spite of tremendous efforts, women are still under-represented in the field of science. Post-graduate education and early tenure track employment are part of the academic career establish-ment in research and development during periods that usually overlap with family formation. Though women tend to leave science mainly after obtaining their PhD, and the timing of mother-hood plays a vital role in a successful research career, qualitative data on this life period are scarce. Our paper focuses on how the normative and institutional contexts shape female PhD engineering students’ family plans. The research was based on intersections of life course and risk and uncertainty theories. Using qualitative interviews we explored how contradicting social norms of childbearing cause tensions in postgraduate students’ lives, and how the different uncer-tainties and risks permeate young researchers’ decisions on early life events. We concluded that, despite the general pattern of delaying motherhood among higher educated women, these students struggle against this postponement, and they hardly have any good options to avoid risk stem-ming from uncertainties and from some characteris-tics of studying and working in engineering. Find-ings of this research may call the attention of stake-holders to possible intervention points.
Resumo:
This brief paper draws upon part of the findings of a HEA Sponsored evaluation of work conducted in 8 Universities across UK aimed at addressing the attainment gap between BME and White students. Following a grounded theory approach, semi-structured interviews with staff at each of the institutions were analysed and three main themes identified: Organisational Sensitivities: Language: and, Ownership. This paper provides a brief discussion of the issues identifying two areas where positive change is needed in institutional practice. The conclusion highlights the complexities of the underlying issues impacting and shaping the Attainment Gap before reaffirming the need to identify and evaluate which interventions are most likely to be transferable across the Sector so as to address the issues and thus enhance the experiences of all students.
Resumo:
This work looks at the effect on mid-gap interface state defect density estimates for In0.53Ga0.47As semiconductor capacitors when different AC voltage amplitudes are selected for a fixed voltage bias step size (100 mV) during room temperature only electrical characterization. Results are presented for Au/Ni/Al2O3/In0.53Ga0.47As/InP metal–oxide–semiconductor capacitors with (1) n-type and p-type semiconductors, (2) different Al2O3 thicknesses, (3) different In0.53Ga0.47As surface passivation concentrations of ammonium sulphide, and (4) different transfer times to the atomic layer deposition chamber after passivation treatment on the semiconductor surface—thereby demonstrating a cross-section of device characteristics. The authors set out to determine the importance of the AC voltage amplitude selection on the interface state defect density extractions and whether this selection has a combined effect with the oxide capacitance. These capacitors are prototypical of the type of gate oxide material stacks that could form equivalent metal–oxide–semiconductor field-effect transistors beyond the 32 nm technology node. The authors do not attempt to achieve the best scaled equivalent oxide thickness in this work, as our focus is on accurately extracting device properties that will allow the investigation and reduction of interface state defect densities at the high-k/III–V semiconductor interface. The operating voltage for future devices will be reduced, potentially leading to an associated reduction in the AC voltage amplitude, which will force a decrease in the signal-to-noise ratio of electrical responses and could therefore result in less accurate impedance measurements. A concern thus arises regarding the accuracy of the electrical property extractions using such impedance measurements for future devices, particularly in relation to the mid-gap interface state defect density estimated from the conductance method and from the combined high–low frequency capacitance–voltage method. The authors apply a fixed voltage step of 100 mV for all voltage sweep measurements at each AC frequency. Each of these measurements is repeated 15 times for the equidistant AC voltage amplitudes between 10 mV and 150 mV. This provides the desired AC voltage amplitude to step size ratios from 1:10 to 3:2. Our results indicate that, although the selection of the oxide capacitance is important both to the success and accuracy of the extraction method, the mid-gap interface state defect density extractions are not overly sensitive to the AC voltage amplitude employed regardless of what oxide capacitance is used in the extractions, particularly in the range from 50% below the voltage sweep step size to 50% above it. Therefore, the use of larger AC voltage amplitudes in this range to achieve a better signal-to-noise ratio during impedance measurements for future low operating voltage devices will not distort the extracted interface state defect density.
Resumo:
Empirical studies of education programs and systems, by nature, rely upon use of student outcomes that are measurable. Often, these come in the form of test scores. However, in light of growing evidence about the long-run importance of other student skills and behaviors, the time has come for a broader approach to evaluating education. This dissertation undertakes experimental, quasi-experimental, and descriptive analyses to examine social, behavioral, and health-related mechanisms of the educational process. My overarching research question is simply, which inside- and outside-the-classroom features of schools and educational interventions are most beneficial to students in the long term? Furthermore, how can we apply this evidence toward informing policy that could effectively reduce stark social, educational, and economic inequalities?
The first study of three assesses mechanisms by which the Fast Track project, a randomized intervention in the early 1990s for high-risk children in four communities (Durham, NC; Nashville, TN; rural PA; and Seattle, WA), reduced delinquency, arrests, and health and mental health service utilization in adolescence through young adulthood (ages 12-20). A decomposition of treatment effects indicates that about a third of Fast Track’s impact on later crime outcomes can be accounted for by improvements in social and self-regulation skills during childhood (ages 6-11), such as prosocial behavior, emotion regulation and problem solving. These skills proved less valuable for the prevention of mental and physical health problems.
The second study contributes new evidence on how non-instructional investments – such as increased spending on school social workers, guidance counselors, and health services – affect multiple aspects of student performance and well-being. Merging several administrative data sources spanning the 1996-2013 school years in North Carolina, I use an instrumental variables approach to estimate the extent to which local expenditure shifts affect students’ academic and behavioral outcomes. My findings indicate that exogenous increases in spending on non-instructional services not only reduce student absenteeism and disciplinary problems (important predictors of long-term outcomes) but also significantly raise student achievement, in similar magnitude to corresponding increases in instructional spending. Furthermore, subgroup analyses suggest that investments in student support personnel such as social workers, health services, and guidance counselors, in schools with concentrated low-income student populations could go a long way toward closing socioeconomic achievement gaps.
The third study examines individual pathways that lead to high school graduation or dropout. It employs a variety of machine learning techniques, including decision trees, random forests with bagging and boosting, and support vector machines, to predict student dropout using longitudinal administrative data from North Carolina. I consider a large set of predictor measures from grades three through eight including academic achievement, behavioral indicators, and background characteristics. My findings indicate that the most important predictors include eighth grade absences, math scores, and age-for-grade as well as early reading scores. Support vector classification (with a high cost parameter and low gamma parameter) predicts high school dropout with the highest overall validity in the testing dataset at 90.1 percent followed by decision trees with boosting and interaction terms at 89.5 percent.
Resumo:
We studied the optical properties of a strain-induced direct-band-gap Ge quantum well embedded in InGaAs. We showed that the band offsets depend on the electronegativity of the layer in contact with Ge, leading to different types of optical transitions in the heterostructure. When group-V atoms compose the interfaces, only electrons are confined in Ge, whereas both carriers are confined when the interface consists of group-III atoms. The different carrier confinement results in different emission dynamics behavior. This study provides a solution to obtain efficient light emission from Ge.
Resumo:
Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as
`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol
particles and greenhouse gases (GHGs) as responses to their surrounding environments.
While the signicance of quantifying the exchange rates of GHGs and atmospheric
aerosol particles between the terrestrial biosphere and the atmosphere is
hardly questioned in many scientic elds, the progress in improving model predictability,
data interpretation or the combination of the two remains impeded by
the lack of precise framework elucidating their dynamic transport processes over a
wide range of spatiotemporal scales. The diculty in developing prognostic modeling
tools to quantify the source or sink strength of these atmospheric substances
can be further magnied by the fact that the climate system is also sensitive to the
feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,
the emergent need is to reduce uncertainties when assessing this complex and dynamic
feedback cycle that is necessary to support the decisions of mitigation and
adaptation policies associated with human activities (e.g., anthropogenic emission
controls and land use managements) under current and future climate regimes.
With the goal to improve the predictions for the biosphere-atmosphere exchange
of biologically active gases and atmospheric aerosol particles, the main focus of this
dissertation is on revising and up-scaling the biotic and abiotic transport processes
from leaf to canopy scales. The validity of previous modeling studies in determining
iv
the exchange rate of gases and particles is evaluated with detailed descriptions of their
limitations. Mechanistic-based modeling approaches along with empirical studies
across dierent scales are employed to rene the mathematical descriptions of surface
conductance responsible for gas and particle exchanges as commonly adopted by all
operational models. Specically, how variation in horizontal leaf area density within
the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes
and thereby the ultrane particle collection eciency at the leaf/branch scale
is explored using wind tunnel experiments with interpretations by a porous media
model and a scaling analysis. A multi-layered and size-resolved second-order closure
model combined with particle
uxes and concentration measurements within and
above a forest is used to explore the particle transport processes within the canopy
sub-layer and the partitioning of particle deposition onto canopy medium and forest
oor. For gases, a modeling framework accounting for the leaf-level boundary layer
eects on the stomatal pathway for gas exchange is proposed and combined with sap
ux measurements in a wind tunnel to assess how leaf-level transpiration varies with
increasing wind speed. How exogenous environmental conditions and endogenous
soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and
below-ground water dynamics in the soil-plant system and shape plant responses
to droughts is assessed by a porous media model that accommodates the transient
water
ow within the plant vascular system and is coupled with the aforementioned
leaf-level gas exchange model and soil-root interaction model. It should be noted
that tackling all aspects of potential issues causing uncertainties in forecasting the
feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single
dissertation but further research questions and opportunities based on the foundation
derived from this dissertation are also brie
y discussed.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Background: Depression is the largest contributing factor to years lost to disability, and symptom remission does not always result in functional improvement. Comprehensive analysis of functioning requires investigation both of the competence to perform behaviours, as well as actual performance in the real world. Further, two independent domains of functioning have been proposed: adaptive (behaviours conducive to daily living skills and independent functioning) and interpersonal (behaviours conducive to the successful initiation and maintenance of social relationships). To date, very little is known about the relationship between these constructs in depression, and the factors that may play a key role in the disparity between competence and real-world performance in adaptive and interpersonal functioning. Purpose: This study used a multidimensional (adaptive and interpersonal functioning), multi-level (competence and performance) approach to explore the potential discrepancy between competence and real-world performance in depression, specifically investigating whether self-efficacy (one’s beliefs of their capability to perform particular actions) predicts depressed individuals’ underperformance in the real world relative to their ability. A comparison sample of healthy participants was included to investigate the level of depressed individuals’ impairment, across variables, relative to healthy individuals. Method: Forty-two participants with depression and twenty healthy participants without history of, or current, psychiatric illness were recruited in the Kingston, Ontario community. Competence, self-efficacy, and real-world functioning all in both adaptive and interpersonal domains, and symptoms were assessed during a single-visit assessment. Results: Relative to healthy individuals, depressed individuals showed significantly poorer adaptive and interpersonal competence, adaptive and interpersonal functioning, and significantly lower self-efficacy for adaptive and interpersonal behaviours. Self-efficacy significantly predicted functional disability both in the domain of adaptive and interpersonal functioning. Interpersonal self-efficacy accounted for significant variance in the discrepancy between interpersonal competence and functioning. Conclusions: The current study provides the first data regarding relationships among competence, functioning, and self-efficacy in depression. Self-efficacy may play an important role in the deployment of functional skills in everyday life. This has implications for therapeutic interventions aimed at enhancing depressed individuals’ engagement in functional activities. There may be additional intrinsic or extrinsic factors that influence the relationships among competence and functioning in depression.
Resumo:
Multi-frequency eddy current measurements are employed in estimating pressure tube (PT) to calandria tube (CT) gap in CANDU fuel channels, a critical inspection activity required to ensure fitness for service of fuel channels. In this thesis, a comprehensive characterization of eddy current gap data is laid out, in order to extract further information on fuel channel condition, and to identify generalized applications for multi-frequency eddy current data. A surface profiling technique, generalizable to multiple probe and conductive material configurations has been developed. This technique has allowed for identification of various pressure tube artefacts, has been independently validated (using ultrasonic measurements), and has been deployed and commissioned at Ontario Power Generation. Dodd and Deeds solutions to the electromagnetic boundary value problem associated with the PT to CT gap probe configuration were experimentally validated for amplitude response to changes in gap. Using the validated Dodd and Deeds solutions, principal components analysis (PCA) has been employed to identify independence and redundancies in multi-frequency eddy current data. This has allowed for an enhanced visualization of factors affecting gap measurement. Results of the PCA of simulation data are consistent with the skin depth equation, and are validated against PCA of physical experiments. Finally, compressed data acquisition has been realized, allowing faster data acquisition for multi-frequency eddy current systems with hardware limitations, and is generalizable to other applications where real time acquisition of large data sets is prohibitive.