907 resultados para Divalent Metal Ions
Resumo:
With the increasing importance that nanotechnologies have in everyday life, it is not difficult to realize that also a single molecule, if properly designed, can be a device able to perform useful functions: such a chemical species is called chemosensor, that is a molecule of abiotic origin that signals the presence of matter or energy. Signal transduction is the mechanism by which an interaction of a sensor with an analyte yields a measurable form of energy. When dealing with the design of a chemosensor, we need to take into account a “communication requirement” between its three component: the receptor unit, responsible for the selective analyte binding, the spacer, which controls the geometry of the system and modulates the electronic interaction between the receptor and the signalling unit, whose physico-chemical properties change upon complexation. A luminescent chemosensor communicates a variation of the physico-chemical properties of the receptor unit with a luminescence output signal. This thesis work consists in the characterization of new molecular and nanoparticle-based system which can be used as sensitive materials for the construction of new optical transduction devices able to provide information about the concentration of analytes in solution. In particular two direction were taken. The first is to continue in the development of new chemosensors, that is the first step for the construction of reliable and efficient devices, and in particular the work will be focused on chemosensors for metal ions for biomedical and environmental applications. The second is to study more efficient and complex organized systems, such as derivatized silica nanoparticles. These system can potentially have higher sensitivity than molecular systems, and present many advantages, like the possibility to be ratiometric, higher Stokes shifts and lower signal-to-noise ratio.
Resumo:
Urease is a nickel-dependent enzyme that catalyzes hydrolysis of urea in the last step of organic nitrogen mineralization. Its active site contains a dinuclear center for Ni(II) ions that must be inserted into the apo-enzyme through the action of four accessory proteins (UreD, UreE, UreF, UreG) leading to activation of urease. UreE, acting as a metallo-chaperone, delivers Ni(II) to the preformed complex of apo-urease-UreDFG and has the capability to enhance the GTPase activity of UreG. This study, focused on characterization of UreE from Sporosarcina pasteurii (SpUreE), represents a piece of information on the structure/mobility-function relationships that control nickel binding by SpUreE and its interaction with SpUreG. A calorimetric analysis revealed the occurrence of a binding event between these proteins with positive cooperativity and a stoichiometry consistent with the formation of the (UreE)2-(UreG)2 hetero-oligomer complex. Chemical Shift Perturbations induced by the protein-protein interaction were analyzed using high-resolution NMR spectroscopy, which allowed to characterize the molecular details of the protein surface of SpUreE involved in the complex formation with SpUreG. Moreover, backbone dynamic properties of SpUreE, determined using 15N relaxation analysis, revealed a general mobility in the nanoseconds time-scale, with the fastest motions observed at the C-termini. The latter analysis made it possible for the first time to characterize of the C-terminal portions, known to contain key residues for metal ion binding, that were not observed in the crystal structure of UreE because of disorder. The residues belonging to this portion of SpUreE feature large CSPs upon addition of SpUreG, showing that their chemical environment is directly affected by protein-protein interaction. Metal ion selectivity and affinity of SpUreE for cognate Ni(II) and non cognate Zn(II) metal ions were determined, and the ability of the protein to select Ni(II) over Zn(II), in consistency with the proposed role in Ni(II) cations transport, was established.
Resumo:
Bei der Untersuchung molekularer magnetischer Materialien spielen Metall-Radikal Verbindungen eine bedeutende Rolle. Ein Forschungsschwerpunkt stützt sich auf die Familie der Nitronyl-Nitroxid (NIT) Radikale, die sich durch eine hohe chemische Stabilität auszeichnen. Im sogenannten „Metall-Radikal Ansatz“ wurden die starken Austauschwechselwirkungen zwischen stabilen Radikalen und Übergangsmetallionen in mehrdimensionalen Netzwerken ausgiebig untersucht. Um diese Netzwerke mit NIT Radikalen aufzubauen, müssen zusätzliche funktionelle Gruppen, mit einem Abstand zur spintragenden Einheit, in das Molekül eingebaut werden. Dies kann zu einer zusätzlichen schwachen Spinaustauschwechselwirkung führen. Um diese Wechselwirkung zwischen Metalldimeren mit einem einzelnen Benzoat annalogen NIT-Radikal zu untersuchen, wurden dimere Mangan(II), Kobalt(II) und Zink(II) Komplexe mit dem Chelatliganden N,N,N',N'-Tetrakis(2-benzimid-azolylalkyl)-2-hydroxy-1,3-diamino-propan synthetisiert und zusätzlich über eine periphere Carboxylat Gruppe eines NIT Radikals verbrückt.rnDie Messungen der magnetischen Suszeptibilität weisen auf eine dominante antiferromagnetische Wechselwirkung in der Metall-Radikal Verbindung hin, bei der es sich um die Spin-Austauschwechselwirkung innerhalb des Metalldimers handelt. Durch den Vergleich mit analogen Nitrobenzoat- verbrückten Mangan(II) und Kobalt(II) Verbindungen konnte gezeigt werden, dass keine Metall-Radikal Wechselwirkung beobachtet wird, obwohl eine Wechselwirkung der pi*-orbitale mit den delokalisierten pi-System des Phenylrings durch Spin-Polarisation grundsätzlich möglich ist. Auch ESR - Messungen bestätigen dies, da der Spingrundzustand das anisotrope Signal des freien NIT Radikals aufweist. Das Radikal verhält sich somit wie ein isoliertes S=1/2 Spin-Zentrum, was zusätzlich durch DFT-Rechnungen bekräftigt werden konnte. Zusammenfassend führt also die Koordination eines NIT-Benzoats an ein antiferromagnetisch gekoppeltes Metalldimer nur zur Anhebung des Spingrundzustandes und hat keinen signifikanten Effekt auf die Austauschwechselwirkung. Um trotzdem eine Metall-Radikal Wechselwirkung beobachten zu können, ist es notwendig Koordinationsverbindungen zu synthetisieren in denen hohe Spingrundzustände besetzt werden. Dies trifft auf das analoge Kupferdimer zu, wofür eine ferromagnetische Wechselwirkung zu beobachten ist.rnNach den Regeln der Spin-Polarisation müsste die Verkürzung des Austauschpfades um eine Bindung zu einer Umkehrung des Vorzeichens der magnetischen Wechselwirkung führen. Diese Verkürzung kann man durch die Verwendung des alternativen stabilen NOA-Radikals (tert-Butyl Nitroxid) erreichen. Sowohl das NIT als auch das NOA-Radikal werden an ein Kupfer(II)-dimer koordiniert, das durch die Verwendung des oben erwähnten N6O-Liganden gebildet wurde. In der Modellverbindung, ohne einen paramagnetischen Substituenten am Benzoat, zeigen die Kupferionen eine ferromagnetische Wechselwirkung mit einem Triplett Grundzustand, dessen Existenz durch die Messung der magnetischen Suszeptibilität und ESR-Spektroskopie belegt werden kann. Aufgrund der nahezu identischen Koordinationsumgebung bleibt bei allen synthetisierten Verbindungen die Kupfer-Kupfer Wechselwirkung dabei gleich. Die Daten von ESR und magnetischen Messungen zeigen weiterhin auf eine signifikante zusätzliche Metall-Radikal Wechselwirkung hin. Bei der NIT-Verbindung ist diese Austauschwechselwirkung schwach antiferromagnetisch, während die NOA-Verbindung eine schwache ferromagnetische Kopplung aufzeigt. Diese Resultate können durch DFT Rechnungen bekräftigt werden. Der Vorzeichenwechsel des Kopplungsparameters kann durch die Verkürzung des Austauschpfades vom NIT zum NOA-Benzoat um eine Bindung erklärt werden. Durch die Wahl von geeigneten Radikal- Liganden und Metallionen, zeigt sich die Möglichkeit, Systeme zu erzeugen, in denen die Radikal-Metall Wechselwirkung auch über größere Distanzen den Spin-Grundzustand des gesamten Systems signifikant beeinflussen kann. die Anwendung dieses Konzeptes auf Metall-Radikal Cluster System sollte Von großem Interesse sein.rn
Resumo:
The work investigates the feasibility of a new process aimed at the production of hydrogen with inherent separation of carbon oxides. The process consists in a cycle in which, in the first step, a mixed metal oxide is reduced by ethanol (obtained from biomasses). The reduced metal is then contacted with steam in order to split the water and sequestrating the oxygen into the looping material’s structure. The oxides used to run this thermochemical cycle, also called “steam-iron process” are mixed ferrites in the spinel structure MeFe2O4 (Me = Fe, Co, Ni or Cu). To understand the reactions involved in the anaerobic reforming of ethanol, diffuse reflectance spectroscopy (DRIFTS) was used, coupled with the mass analysis of the effluent, to study the surface composition of the ferrites during the adsorption of ethanol and its transformations during the temperature program. This study was paired with the tests on a laboratory scale plant and the characterization through various techniques such as XRD, Mössbauer spectroscopy, elemental analysis... on the materials as synthesized and at different reduction degrees In the first step it was found that besides the generation of the expected CO, CO2 and H2O, the products of ethanol anaerobic oxidation, also a large amount of H2 and coke were produced. The latter is highly undesired, since it affects the second step, during which water is fed over the pre-reduced spinel at high temperature. The behavior of the different spinels was affected by the nature of the divalent metal cation; magnetite was the oxide showing the slower rate of reduction by ethanol, but on the other hand it was that one which could perform the entire cycle of the process more efficiently. Still the problem of coke formation remains the greater challenge to solve.
Resumo:
Sulfate aerosol plays an important but uncertain role in cloud formation and radiative forcing of the climate, and is also important for acid deposition and human health. The oxidation of SO2 to sulfate is a key reaction in determining the impact of sulfate in the environment through its effect on aerosol size distribution and composition. This thesis presents a laboratory investigation of sulfur isotope fractionation during SO2 oxidation by the most important gas-phase and heterogeneous pathways occurring in the atmosphere. The fractionation factors are then used to examine the role of sulfate formation in cloud processing of aerosol particles during the HCCT campaign in Thuringia, central Germany. The fractionation factor for the oxidation of SO2 by ·OH radicals was measured by reacting SO2 gas, with a known initial isotopic composition, with ·OH radicals generated from the photolysis of water at -25, 0, 19 and 40°C (Chapter 2). The product sulfate and the residual SO2 were collected as BaSO4 and the sulfur isotopic compositions measured with the Cameca NanoSIMS 50. The measured fractionation factor for 34S/32S during gas phase oxidation is αOH = (1.0089 ± 0.0007) − ((4 ± 5) × 10−5 )T (°C). Fractionation during oxidation by major aqueous pathways was measured by bubbling the SO2 gas through a solution of H2 O2
Resumo:
Die vorliegende Arbeit beschäftigt sich mit der Darstellung zweikerniger Koordinationsverbindungen, bei denen zweiwertige Ionen der 3d-Übergangsmetalle über einen bestimmten Liganden verbrückt sind. Dieser Brückenligand, das N,N,N‘,N‘-Tetrakis-(2-methylpyridyl)-benzol-1,4-diamin (TPBD), besteht aus einem p-Phenylendiamin-Gerüst, an dessen Stickstoffe je zwei Methylpyridin-Gruppen gebunden sind. In diesen zwei jeweils dreizähnigen Bindungstaschen wurden 3d-Übergangsmetallionen komplexiert, wobei deren Koordinationssphäre mit einem zweizähnigen capping-Liganden vom Typ des 1,10-Phenanthrolins und einem einzähnigen dritten Liganden abgesättigt wird. Die strukturellen, magnetischen und elektronischen Eigenschaften der so erhaltenen homometallischen Komplexe mit Mn(II), Fe(II), Co(II), Ni(II), Cu(II) und Zn(II) wurden untersucht. Dabei wurde besonderes Augenmerk auf die Veränderung dieser Eigenschaften bei dem Einsatz unterschiedlicher capping- und dritter Liganden gerichtet. Die schwach antiferromagnetische Wechselwirkung der metallzentrierten Spins über den Brückenliganden führt dabei stets zu einem diamagnetischen Grundzustand, was diese als mögliche Einzelmolekülmagnete ausschließt. Mit der Oxidierbarkeit des Liganden zu seiner radikalischen Spezies besteht die Möglichkeit, einen zusätzlichen Spin in dem System zu erzeugen, woraus ein Spingrundzustand von ungleich null resultiert. Es zeigte sich, dass die Lebensdauer der radikalischen Spezies eine starke Abhängigkeit sowohl von den eingesetzten Metallionen als auch den weiteren Liganden besitzt. Auch vier Derivate des ursprünglichen Brückenliganden konnten synthetisiert und deren Oxidierbarkeit zu den entsprechenden Radikalformen gezeigt werden. Neben der Darstellung homometallischer Komplexe gelang zudem die Synthese und Strukturaufklärung dreier heterometallischer zweikerniger Komplexe mit Mn(II), Co(II) und Ni(II) als Metallionen. Es konnte gezeigt werden, dass diese auch ohne die Oxidation des Brückenliganden bei schwacher antiferromagnetischer Wechselwirkung der Spins einen paramagnetischen Spingrundzustand besitzen.
Resumo:
Die qualitative und quantitative Analyse von Biomolekülen hat in den letzten Jahren und Jahrzehnten immer mehr an Bedeutung gewonnen. Durch das Aufkommen und die kontinuierliche Weiterentwicklung neuer Separations- und Detektionsmethoden und deren Verbindung miteinander zu leistungsfähigen Einheiten, erlangte man Schritt für Schritt neue Erkenntnisse bei ihrer Untersuchung. Die Elementmassenspektrometrie als nachweisstarke Detektionsmethode wird von vielen wissenschaftlichen Arbeitsgruppen bei der Trennung und Quantifizierung von Proteinen und Metalloproteinen mittels Detektion der in den Biomolekülen vorkommenden Metalle und Heteroatome angewendet. Heteroatome (z.B. Schwefel, Phosphor) haben im Plasma des ICP-MS (inductively coupled plasma - mass spectrometer) schlechte Ionisationseigenschaften und dementsprechend deutlich höhere Nachweisgrenzen als Metalle. Ein Ansatz, schlecht oder nicht detektierbare Verbindungen (also solche, die keine Metalle oder Heteroatome enthalten) mit dem ICP-MS sichtbar zu machen, ist die Markierung der selbigen mit Metallionen oder -cluster. rnIn dieser Arbeit ist es gelungen, der Analyse ganz unterschiedlicher Substanzklassen, zum einen metallische Nanopartikel und zum anderen Proteine, neue Impulse zu geben und zukünftiges Potential bei der Anwendung gekoppelter Techniken zur Separation und Detektion aufzuzeigen. Durch die Verwendung einer alten, aber neu konzipierten Trenntechnik, der Gelelektrophorese (GE), und deren Kopplung an einen modernen Detektor, dem ICP-MS, kann die für die Proteinanalytik weit verbreitete Gelelektrophorese ihr enormes Potential bei der Trennung verschiedenster Verbindungsklassen mit der exzellenten Nachweisstärke und Elementspezifität des ICP-MS verbinden und dadurch mit deutlich weniger Arbeitsaufwand als bisher qualitative und auch quantitative Ergebnisse produzieren. Bisher war dies nur mit großem präparativem Aufwand unter Verwendung der laser ablation möglich. Bei der Analyse von Nanopartikeln konnte aufgezeigt werden, dass durch die GE-ICP-MS-Kopplung aufgrund der guten Trenneigenschaften der GE vorhandene Spezies bzw. Fraktionen voneinander separiert werden und mit Hilfe des ICP-MS Informationen auf atomarem Niveau gewonnen werden können. Es war möglich, das atomare Verhältnis der Metallatome im Kern und der Schwefelatome in der Ligandenhülle eines Nanopartikels zu bestimmen und damit die Größe des Partikels abzuschätzen. Auch konnte die Anzahl der Goldatome in einem dem Schmid-Cluster ähnlichen Nanopartikel bestimmt werden, was vorher nur mit Hilfe von MALDI-TOF möglich war. Bei der Analyse von Biomolekülen konnte auf einfache Weise der Phosphorylierungsgrad verschiedener Proteine bestimmt werden. Auch bei kleinen Molekülen erzielt die Gelelektrophorese ausgezeichnete Trennergebnisse, wie z. B. bei der Analyse verschiedener Brom- und Iodspezies.rnDie stöchiometrische Kopplung eines Proteins an einen Nanopartikel, ohne eine der beiden Verbindungen in einem größeren Maße zu verändern, stellte jedoch eine Herausforderung dar, die im Rahmen dieser Arbeit nicht vollständig gelöst werden konnte. Verschiedene Ansätze zur Kopplung der beiden Substanzen wurden erprobt, jedoch führte keine zu dem gewünschten Ergebnis einer stöchiometrisch vollständigen und spezifischen Modifikation eines Proteins mit einem Nanopartikel. Durch das Potential der GE-ICP-MS-Kopplung bei der Analyse beider Substanz-klassen und dem Beweis der Praktikabilität und Zuverlässigkeit der Methode ist jedoch der Grundstein für weitere Forschungen auf diesem Gebiet gelegt worden. Ist eine geeignete chemische Kopplung der beiden Substanzklassen gefunden und beherrscht, steht auf analytischer Seite eine leistungsstarke Kombination aus Trennung und Detektion zur Verfügung, um die Quantifizierung von Proteinen entscheidend zu verbessern.rn
Resumo:
Das Ziel der vorliegenden Arbeit waren die Synthese und Untersuchung von Modellverbindungen zur Sauerstoffaktivierung auf der Basis neuer Ligandensysteme des 1,3,4-Thiadiazols unter Ausarbeitung einer Synthesestrategie zur Derivatisierung der heteroaromatischen 1,3,4-Thiadiazol-Liganden, deren Koordinationsverhalten in Abhängigkeit ihres 2,5-Substitutionsmusters untersucht wurde, sowie die fortführende Bearbeitung bereits bekannter Ligandensysteme zur Erzeugung von homo- und heterovalenten Übergangsmetallkomplexverbindungen.rnDie unter der Verwendung der modifizierten Liganden TPDE, H1TPDP und H1BPMP resultierenden dinuklearen Komplexverbindungen zeigen unterschiedlich starke antiferromagnetische Wechselwirkungen in Abhängigkeit der vorhandenen Brückenliganden. In der Verbindung [Fe6O2(OH)(L´)2(OOCMe3)9(OEt)2] trat eine Fragmentierung des Liganden H1TPDP auf. Das cisoide Ligandensubstitutionsmuster der entstandenen sechskernigen Verbindung ist verantwortlich für die interessanten magnetischen Eigenschaften des Komplexes. rnNeue Perspektiven zur Erzeugung von Modellverbindungen zur Sauerstoffaktivierung wurden mit dem Mono-Chelatliganden H1ETHP und den Bis-Chelatliganden HL2H, H2L2H und H2BATP aufgezeigt. Die Umsetzung von H1ETHP mit verschiedenen Übergangsmetallsalzen resultierte für die Metalle Cr(III), Fe(III), Co(III) und Ni(II) in mononuklearen Verbindungen des Typs [M(ETHP)2]X (X = ClO4, FeCl4, OMe, Cl, Br) sowie in zwei tetranuklearen Verbindungen mit Mn(II) und Cu(II). [Mn4(ETHP)6] besitzt ein propellerförmiges, planares [Mn4O6]2+-System mit einen Spingrundzustand von S = 5. In allen Verbindungen von H1ETHP konnte eine mono-κN-Koordination des 1,3,4-Thiadiazol-Rückgrates über eines seiner beiden endozyklischen Stickstoffdonoratome beobachtet werden. rnAus Umsetzungen der Bis-Chelatliganden wurden fast ausschließlich polynukleare Übergangsmetallkomplexe erhalten. Insbesondere der Ligand H2L2H zeigt eine ausgeprägte Tendenz zur Ausbildung trinuklearer, linearer Komplexe, welche auf Grund ihrer ungeraden Anzahl von Übergangsmetallionen einen Spingrundzustand S ≠ 0 aufweisen.rn Die mit dem Liganden HL2H erhaltenen Verbindungen unterstreichen die hohe Flexibilität dieser Systeme hinsichtlich der Erzeugung polynuklearer und heterovalenter Komplexverbindungen. So konnten in Abhängigkeit vom verwendeten Übergangsmetallsalz trinukleare, pentanukleare, aber auch hepta- und oktanukleare Verbindungen synthetisiert werden. Insbesondere die Komplexe des Mangans und des Cobalts zeigen ein heterovalentes [MnIIMnIII4]- bzw. [CoII2CoIII3]-Motiv, was sich in Spingrundzuständen von S ≠ 0 äußert. Der diamagnetische, achtkernige Fe8-Cluster besitzt eine pseudo C3-symmetrische Anordnung der Metall-Zentren, während für die heptanukleare Cu7-Kette durch ihre stark unterschiedlichen Kupfer-Koordinationsgeometrien interessante magnetische Austauschwechselwirkungen beobachtet werden konnten. Der dreikernige µ3-oxo-verbrückte Komplex des Liganden H2BATP zeigt als interessante strukturelle Eigenschaft ein ein µ3-Verbrückungsmuster des eingesetzten Sulfat-Anions. rnIn allen Komplexen der Bis-Chelatliganden HL2H, H2L2H und H2BATP konnte ein µ2-κN,κN-Koordiantionsmodus des 1,3,4-Thiadiazols und somit eine Abhängigkeit der Verbrückung vom Ligandensubstitutionsmuster beobachtet werden.rn
Resumo:
Der erste Teil der hier vorgestellten Arbeit verfolgt die Synthese potentieller Modellverbindungen oligonuklearer Metalloproteine auf Basis von Salen-Liganden. Dazu wurden zwei Ligandensysteme mit unterschiedlich raumerfüllenden Alkyl-Substituenten modifiziert und auf ihre koordinativen Eigenschaften hin untersucht. Für das Ligandensystem auf Basis des Bis-(salicylidenamino)-propan-2-ols konnten fünf Derivate (H3L1, H3L2A,H3L2B, H3L3, H3L4), für das zweite verwendete Ligandensystem auf Basis des 1H-3,5-Bis-(salicylidenaminomethyl)-pyrazols konnten zwei weitere Derivate (H3L5A, H3L5B) dargestellt und zu Koordinationsverbindungen umgesetzt werden.rnFür den hier verwendeten Bis-(salicylidenamino)-propan-2-ol Liganden H3L1, welcher die geringsten sterischen Anforderungen stellt, konnten mono-, tri- und tetranukleare Koordinationsverbindungen synthetisiert werden. Dabei gelingt es dem Liganden, sich sowohl in planarer als auch in unterschiedlich stark gewinkelter Konformation um ein oder mehrere Metallzentren anzuordnen, wobei der Ligand ein N2O2- seines N2O3-Donorsets zur Koordination nutzt. Die Verbindung {[Ni7(HL1)2(L1)2(OBz)4(OMe)(H2O)]}n zeigt, dass eine Verkettung der so gestalteten dreikernigen Einheiten über das freie Propanol-Sauerstoffatomdes Ligandenrückgrats möglich ist. Mit zunehmendem sterischen Anspruch der angefügten Alkylsubstituenten nimmt die geometrische Flexibilität und somit das Potential des Liganden zur Ausbildung höhernuklearer Strukturen ab. So ist für Liganden mit mittlerem sterischen Anspruch neben mononuklearen Komplexen noch die Gestaltung dinuklearer Systeme möglich. Erhöht man den sterischen Anspruch des Liganden weiter, findet nur noch eine Reaktion zu mononuklearen Verbindungen statt.rnMit den Pyrazol-basierten Ligandensystemen H3L5A und H3L5B konnten dinukleare Kupfer- und Nickelverbindungen synthetisiert werden.rnDer zweite Teil dieser Arbeit befasst sich mit der Gestaltung von Spin-Crossover Systemen (SCO). Dazu soll ein Spinübergang innerhalb des gestalteten schaltbaren Systems an die Anwesenheit eines Signalstoffs gekoppelt werden, so dass diese SCO-Verbindung als Sensor für den Signalstoff eingesetzt werden kann. Dazu wurden zwei unterschiedliche Ansätze entwickelt und untersucht.rnDie erste Methode beruht auf der Kombination eines zum Spin-Crossover befähigten Metallzentrums, eines Capping-Liganden, eines zur Signalstofferkennung funktionalisierten Co-Liganden sowie eines entsprechenden Signalstoffs. Als Capping-Liganden wurden tetra- und pentadentateLigandensysteme eingesetzt und mit unterschiedlich Picolyl-substituierten Monoaza-[12]-krone-4-Derivaten umgesetzt, wobei die Monoazakrone zur Komplexierung des Signalstoffs,hier in Form eines Alkalimetallions, zur Verfügung steht. Nach dieser ersten Methode konnten im Zeitraum dieser Arbeit noch keine zufriedenstellenden Ergebnisse erzielt werden.rnEine vielversprechende zweite Möglichkeit beruht auf der Verwendung eines mehrzähnigen, etablierten Spin-Crossover Liganden,welcher in seiner Peripherie mit einer Bindungstasche zur Aufnahme des Signalstoffmodifiziert wird.Mit Hilfe des so gestalteten Liganden 4'-(4'''-Benzo-[15]-krone-5)-methyloxy-2,2':6',2''-terpyridin ([b15c5]-tpy) gelang die Umsetzung zu entsprechenden Eisen(II)- und Kobalt(II)komplexen der Zusammensetzung [M([b15c5]-tpy)2]2+. Alle synthetisierten Eisen(II)-Komplexe liegen aufgrund der hohen Ligandenfeldstärke des Terpyridins über einen Temperaturbereich von 300 – 400 K in ihrer diamagnetischen Low Spin Form vor. Die entsprechenden Kobalt(II)-Komplexe zeigen über einen Temperaturbereich von 2 – 350 K ein kontinuierliches, aber unvollständiges Spin-Crossover Verhalten.rnDer Einfluss von Signalstoffen auf das Spin-Crossover Verhalten der Kobalt(II)-Systeme wurde in einem ersten Versuch unter der Verwendung von Natriumionen als Signalstoff untersucht. Dabei stellte sich heraus, dass Natriumionen für dieses System zwar nicht als Auslöser eines SCO verwendet werden können, sie aber dennoch eine starke Auswirkung auf den Verlauf des Spin-Crossovers haben.
Resumo:
Phosphonatliganden in erweiterten anorganischen Hybridmaterialien undrnals Radikalträgern in KomplexenrnrnAnorganisch-organische Hybridmaterialien sind in der Regel extrem vielseitig. Die systematische Darstellung von niederdimensionalen Materialien (eindimensionale Kettenverbindungen oder zweidimensionalen Schichtverbindungen) mit einer Kontrolle über die Art der Verbindung,rnbietet neue Möglichkeiten im Bereich des molekularen Magnetismus. Hier im Fall von Metall-Phosphonat Verbindungen in erweiterten anorganischen Hybriden wurde der pH - Wert während der Reaktion eingestellt, wodurch der Grad der Protonierung des Phosphonatliganden kontrolliert wurde. Aufgrund der Tatsache, dass alle erhaltenen Metall Phosphonatverbindungen neutral waren, konnte das Ligand zu Metallverhältnis erstmals vorhergesagt werden. So wurden mehrere neue Metall–Phosphonat Verbindungen im Bereich von Null-dimensionalen (I0O0, Co-Kristallisation von M(H2O)6 mitrndeprotonierten Phosphonatligand), über eindimensionalen (I1O0, Kettenstrukturen) bis hin zu zweidimensionalen (I2O0, Schichtstrukturen) ausführlich diskutiert in Bezug auf ihr magnetisches Verhalten. Im Allgemeinen sind die erwarteten Austauschwechselwirkungen in einem erweiterten anorganischen Hybridmaterial stark, weil oft ein Superaustausch durch ein einzelnes Sauerstoffatom möglich ist. Hier waren oft mehrere konkurrierende Austauschwechselwirkungen vorhanden, so dass kompliziertere magnetische Verhalten beobachtet wurden.rnrnDarüber hinaus wurden drei neue Beispiele von Nitronyl-Nitroxidradikale dargestellt, in denen eine zusätzliche saure Funktionalität eingeführt war. Die Auswirkungen des sauren Charakters der zusätzlich eingeführten Sulfonsäure oder Phosphonsäure-Gruppe auf das Nitronyl-Nitroxidradikal wurden im Detail zum ersten Mal untersucht. Die mit der Phosphonsäure-Gruppe versehenen Nitronyl-Nitroxidradikale sind perfekte Proben für die Untersuchung einer Spin-Verschiebung in Nitronyl-Nitroxidradikale durch EPR-Spektroskopie, aufgrund des eingeführten Phosphors. Auch der Protonierungsgrad der zusätzlich eingeführten Phosphonsäure-Gruppe wurde berücksichtigt. In dieser Arbeit wurden die ersten Metallkomplexe der neuen substituierten sauren Nitronyl-Nitroxidradikale vorgestellt. Die Koordination von Nickel(II) Metallionen an die saure, zweite funktionelle Gruppe des Nitronyl–Nitroxid Radikal wurde beschrieben. Die magnetische Austauschwechselwirkung der Metallionen untereinander und die Metall-Radikal-Austauschwechselwirkungen wurden untersucht. rnrnIm Allgemeinen können interessante molekulare magnetische Materialien dadurch dargestellt werden, dass die Dimension der Metall-Phosphonat-Verbindungen als Beispiele für die erweiterten anorganischen Hybridmaterialien gesteuert werden kann. Mit Nitronyl-Nitroxidradikale als organische Liganden können in Zukunft noch mehr Spin-Träger in anorganisch-organischen Gerüstmaterialien integriert werden um die magnetischen Eigenschaften zu verbesseren.rn
Resumo:
In this experimental work we report the design, the synthesis and characterization of a new class of Re(I) complexes of the general formula fac-[Re(CO)3(N^N)(2-QTZ)], where N^N = 2,2’ bipyridine or 1,10 phenantroline, whereas 2-QTZ is the anion 2-quinolyl-tetrazolate. The complexes and, in particular, the tetrazolate ligand 2-QTZ were designed in order to investigate their specific interaction with biologically and toxicologically relevant metal ions, as Zn(II), Cd(II) e Cu(II). The addition of such ions led to substantial variations of the photophysical properties of these complexes, suggesting their application as luminescent sensors. The photophysical performance of the complexes proved to remain unchanged inside cellular substrates, as Yarrowia Lipolytica cultures. Within these yeasts, the complexes show unchanged ability to perform luminescent sensing towards Zn(II) and Cd(II) ions.
Resumo:
This work deals with a study on the feasibility of a new process, aimed at the production of hydrogen from water and ethanol (a compound obtained starting from biomasses), with inherent separation of hydrogen from C-containing products. The strategy of the process includes a first step, during which a metal oxide is contacted with ethanol at high temperature; during this step, the metal oxide is reduced and the corresponding metallic form develops. During the second step, the reduced metal compound is contacted at high temperature with water, to produce molecular hydrogen and with formation of the original metal oxide. In overall, the combination of the two steps within the cycle process corresponds to ethanol reforming, where however COx and H2 are produced separately. Various mixed metal oxides were used as electrons and ionic oxygen carriers, all of them being characterized by the spinel structure typical of M-modified non-stoichiometric ferrites: M0,6Fe2,4O4 (M = Co, Mn or Co/Mn). The first step was investigated in depth; it was found that besides the generation of the expected CO, CO2 and H2O, the products of ethanol anaerobic oxidation, also a large amount of H2 and coke were produced. The latter is highly undesired, since it affects the second step, during which water is fed over the pre-reduced spinel at high temperature. The behavior of the different spinels was affected by the nature of the divalent metal cation. The new materials were tested in terms of both redox proprieties and catalytic activity to generate hydrogen. Still the problem of coke formation remains the greater challenge to solve.
Resumo:
Different synthetic routes have been used for the preparation of a new tetranuclear [Fe4O2(O2CCMe3)(8)(bpm)] cluster (1) and a one-dimensional coordination polymer [Fe4O2-(O2CCMe3)(8)(hmta)](n) (2) (bpm = 2,2'-bipyrimidine and hmta = hexamethylenetetramine). For cluster 1, two structural isomers, 1a and 1b center dot 3MeCN, have been found. X-ray crystallographic analysis showed that all complexes consist of a central {Fe-4(mu(3)-O)(2)}(8+) core. In 1a, metal ions in the core are additionally linked by six bridging pivalates as two other pivalates and a bpm ligand are chelated to Fe-III ions, whereas in cluster 1b, metal ions in the {Fe-4(mu(3)-O)(2)}(8+) core are linked by seven bridging pivalates and only one carboxylate as well as bpm are chelated to the iron centers. In coordination polymer 2, [Fe4O2(O2CCMe3)(8)] clusters are bridged by hmta ligands to form zigzag chains. Magnetic measurements have been carried out to characterize these complexes and revealed antiferromagnetic interactions between Fe-III ions with best-fit parameters of J(wb) = -72.2 (1a) and -88.7 cm(-1) (1b) for wing...body interactions.
Resumo:
With increasing life expectancy and active lifestyles, the longevity of arthroplasties has become an important problem in orthopaedic surgery and will remain so until novel approaches to joint preservation have been developed. The sensitivity of the recipient to the metal alloys may be one of the factors limiting the lifespan of implants. In the present study, the response of human monocytes from peripheral blood to an exposure to metal ions was investigated, using the method of real-time polymerase chain reaction (PCR)-based low-density arrays. Upon stimulation with bivalent (Co2+ and Ni2+) and trivalent (Ti3+) cations and with the calcium antagonist LaCl3, the strength of the elicited monocytic response was in the order of Co2+ > or = Ni2+ > Ti3+ > or = LaCl3. The transcriptional regulation of the majority of genes affected by the exposure of monocytes to Co2+ and Ni2+ was similar. Some genes critically involved in the processes of inflammation and bone resorption, however, were found to be differentially regulated by these bivalent cations. The data demonstrate that monocytic gene expression is adapted in response to metal ions and that this response is, in part, specific for the individual metals. It is suggested that metal alloys used in arthroplasties may affect the extent of inflammation and bone resorption in the peri-implant tissues in dependence of their chemical composition.
Resumo:
Additions of acid anions can alter the cycling of other nutrients and elements within an ecosystem. As strong acid ions move through a forest, they may increase the concentrations of nitrogen (N) and sulfur (S) in the soil solution and stream water. Such treatments also may increase or decrease the availability of other anions, cations and metal ions in the soil. A number of studies in Europe and North America have documented increases in base cation concentrations such as calcium (Ca) and magnesium (Mg) with increased N and S deposition (Foster and Nicolson 1988, Feger 1992, Norton et al. 1994, Adams et al. 1997, Currie et al. 1999, Fernandez et al. 2003). Experiments in Europe also have evaluated the response of forested watersheds to decreased deposition (Tietema et al. 1998, Lamersdorf and Borken 2004). In this chapter, we evaluate the effects of the watershed acidification treatment on the cycling of N, S, Ca, Mg and potassium (K) on Fernow WS3.