926 resultados para Discrete Mathematics in Computer Science
Resumo:
This paper proposes a new strategy to reduce the combinatorial search space of a mixed integer linear programming (MILP) problem. The construction phase of greedy randomized adaptive search procedure (GRASP-CP) is employed to reduce the domain of the integer variables of the transportation model of the transmission expansion planning (TM-TEP) problem. This problem is a MILP and very difficult to solve specially for large scale systems. The branch and bound (BB) algorithm is used to solve the problem in both full and the reduced search space. The proposed method might be useful to reduce the search space of those kinds of MILP problems that a fast heuristic algorithm is available for finding local optimal solutions. The obtained results using some real test systems show the efficiency of the proposed method. © 2012 Springer-Verlag.
Resumo:
Malicious programs (malware) can cause severe damage on computer systems and data. The mechanism that the human immune system uses to detect and protect from organisms that threaten the human body is efficient and can be adapted to detect malware attacks. In this paper we propose a system to perform malware distributed collection, analysis and detection, this last inspired by the human immune system. After collecting malware samples from Internet, they are dynamically analyzed so as to provide execution traces at the operating system level and network flows that are used to create a behavioral model and to generate a detection signature. Those signatures serve as input to a malware detector, acting as the antibodies in the antigen detection process. This allows us to understand the malware attack and aids in the infection removal procedures. © 2012 Springer-Verlag.
Resumo:
This paper presents vectorized methods of construction and descent of quadtrees that can be easily adapted to message passing parallel computing. A time complexity analysis for the present approach is also discussed. The proposed method of tree construction requires a hash table to index nodes of a linear quadtree in the breadth-first order. The hash is performed in two steps: an internal hash to index child nodes and an external hash to index nodes in the same level (depth). The quadtree descent is performed by considering each level as a vector segment of a linear quadtree, so that nodes of the same level can be processed concurrently. © 2012 Springer-Verlag.
Resumo:
In this paper, a trajectory tracking control problem for a nonholonomic mobile robot by the integration of a kinematic neural controller (KNC) and a torque neural controller (TNC) is proposed, where both the kinematic and dynamic models contains disturbances. The KNC is a variable structure controller (VSC) based on the sliding mode control theory (SMC), and applied to compensate the kinematic disturbances. The TNC is a inertia-based controller constituted of a dynamic neural controller (DNC) and a robust neural compensator (RNC), and applied to compensate the mobile robot dynamics, and bounded unknown disturbances. Stability analysis with basis on Lyapunov method and simulations results are provided to show the effectiveness of the proposed approach. © 2012 Springer-Verlag.
Resumo:
This paper presents a usability evaluation of the MTE (Ministry of Labor e Employment) website in order to measure the effectiveness, efficiency and user satisfaction regarding the website. The participants were 12 users (07 users were female and 05 male). The results indicate that although the education level of all participants and computing experience, many of them have had difficulty in finding information and do not recommend the site. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Many topics related to association mining have received attention in the research community, especially the ones focused on the discovery of interesting knowledge. A promising approach, related to this topic, is the application of clustering in the pre-processing step to aid the user to find the relevant associative patterns of the domain. In this paper, we propose nine metrics to support the evaluation of this kind of approach. The metrics are important since they provide criteria to: (a) analyze the methodologies, (b) identify their positive and negative aspects, (c) carry out comparisons among them and, therefore, (d) help the users to select the most suitable solution for their problems. Some experiments were done in order to present how the metrics can be used and their usefulness. © 2013 Springer-Verlag GmbH.
Resumo:
Some machine learning methods do not exploit contextual information in the process of discovering, describing and recognizing patterns. However, spatial/temporal neighboring samples are likely to have same behavior. Here, we propose an approach which unifies a supervised learning algorithm - namely Optimum-Path Forest - together with a Markov Random Field in order to build a prior model holding a spatial smoothness assumption, which takes into account the contextual information for classification purposes. We show its robustness for brain tissue classification over some images of the well-known dataset IBSR. © 2013 Springer-Verlag.
Resumo:
Feature selection aims to find the most important information from a given set of features. As this task can be seen as an optimization problem, the combinatorial growth of the possible solutions may be inviable for a exhaustive search. In this paper we propose a new nature-inspired feature selection technique based on the Charged System Search (CSS), which has never been applied to this context so far. The wrapper approach combines the power of exploration of CSS together with the speed of the Optimum-Path Forest classifier to find the set of features that maximizes the accuracy in a validating set. Experiments conducted in four public datasets have demonstrated the validity of the proposed approach can outperform some well-known swarm-based techniques. © 2013 Springer-Verlag.
Resumo:
Pós-graduação em Educação Escolar - FCLAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Image segmentation is a process frequently used in several different areas including Cartography. Feature extraction is a very troublesome task, and successful results require more complex techniques and good quality data. The aims of this paper is to study Digital Image Processing techniques, with emphasis in Mathematical Morphology, to use Remote Sensing imagery, making image segmentation, using morphological operators, mainly the multi-scale morphological gradient operator. In the segmentation process, pre-processing operators of Mathematical Morphology were used, and the multi-scales gradient was implemented to create one of the images used as marker image. Orbital image of the Landsat satellite, sensor TM was used. The MATLAB software was used in the implementation of the routines. With the accomplishment of tests, the performance of the implemented operators was verified and carried through the analysis of the results. The extration of linear feature, using mathematical morphology techniques, can contribute in cartographic applications, as cartographic products updating. The comparison to the best result obtained was performed by means of the morphology with conventional techniques of features extraction. © Springer-Verlag 2004.
Resumo:
Shape memory alloys (SMAs) provide a compact and effective actuation for a variety of mechanical systems. In this paper, a numerical simulation study of a three degree of-freedom airfoil, subjected to two-dimensional incompressible inviscid flow using a SMA is presented. SMA wire actuators are used to control the flap movement of a wing section. Through the thermo-mechanical constitutive equation of the SMA proposed by Brison, we simulate numerically the behavior of a double SMA wire actuator. Two SMA actuators are used: one to move the flap down and the other to move the flap up. Through the numerical results conducted in the present study, the behavior and characteristics of an SMA actuator with two SMA wires are shown the effectiveness of the SMA actuator. In conclusion, this paper shows the feasibility of using SMA wire actuators for flap movement, with success
Resumo:
This paper shows the application of a hysteretic model for the Magnetorheological Damper (MRD) placed in the plunge degree-of-freedom of aeroelastic model of a wing. This hysteretic MRD model was developed by the researchers of the French Aerospace Lab. (ONERA) and describe, with a very good precision, the hysteretic behavior of the MRD. The aeroelastic model used in this paper do not have structural nonlinearities, the only nonlinearities showed in the model, are in the unsteady flow equations and are the same proposed by Theodorsen and Wagner in their unsteady aerodynamics theory; and the nonlinearity introduced by the hysteretic model used. The main objective of this paper is show the mathematical modeling of the problem and the equations that describes the aeroelastic response of our problem; and the gain obtained with the introduction of this hysteretic model in the equations with respect to other models that do not show the this behavior, through of pictures that represents the time response and Phase diagrams. These pictures are obtained using flow velocities before and after the flutter velocity. Finally, an open-loop control was made to show the effect of the MRD in the aeroelastic behavior.
Resumo:
A robotic control design considering all the inherent nonlinearities of the robot engine configuration is developed. The interactions between the robot and joint motor drive mechanism are considered. The proposed control combines two strategies, one feedforward control in order to maintain the system in the desired coordinate, and feedback control system to take the system into a desired coordinate. The feedback control is obtained using State Dependent Riccati Equation (SDRE). For link positioning two cases are considered. Case 1: For control positioning, it is only used motor voltage; Case 2: For control positioning, it is used both motor voltage and torque between the links. Simulation results, including parametric uncertainties in control shows the feasibility of the proposed control for the considered system.
Resumo:
The increase in new electronic devices had generated a considerable increase in obtaining spatial data information; hence these data are becoming more and more widely used. As well as for conventional data, spatial data need to be analyzed so interesting information can be retrieved from them. Therefore, data clustering techniques can be used to extract clusters of a set of spatial data. However, current approaches do not consider the implicit semantics that exist between a region and an object’s attributes. This paper presents an approach that enhances spatial data mining process, so they can use the semantic that exists within a region. A framework was developed, OntoSDM, which enables spatial data mining algorithms to communicate with ontologies in order to enhance the algorithm’s result. The experiments demonstrated a semantically improved result, generating more interesting clusters, therefore reducing manual analysis work of an expert.