947 resultados para Differential equations, Nonlinear
Resumo:
An array of identical maps with Ising symmetry, with both positive and negative couplings, is studied. We divide the maps into two groups, with positive intra-group couplings and negative inter-group couplings. This leads to antisynchronization between the two groups which have the same stability properties as the synchronized state. Introducing a certain degree of randomness in signs of these couplings destabilizes the anti-synchronized state. Further increasing the randomness in signs of these couplings leads to oscillator death. This is essentially a frustration induced phenomenon. We explain the observed results using the theory of random matrices with nonzero mean. We briefly discuss applications to coupled differential equations. (C) 2013 AIP Publishing LLC.
Resumo:
In this article, we obtain explicit solutions of a system of forced Burgers equation subject to some classes of bounded and compactly supported initial data and also subject to certain unbounded initial data. In a series of papers, Rao and Yadav (2010) 1-3] obtained explicit solutions of a nonhomogeneous Burgers equation in one dimension subject to certain classes of bounded and unbounded initial data. Earlier Kloosterziel (1990) 4] represented the solution of an initial value problem for the heat equation, with initial data in L-2 (R-n, e(vertical bar x vertical bar 2/2)), as a series of self-similar solutions of the heat equation in R-n. Here we express the solutions of certain classes of Cauchy problems for a system of forced Burgers equation in terms of self-similar solutions of some linear partial differential equations. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
In this paper, we study the free vibration of axially functionally graded (AFG) Timoshenko beams, with uniform cross-section and having fixed-fixed boundary condition. For certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, there exists a fundamental closed form solution to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of non-homogeneous Timoshenko beams, with various material mass density, elastic modulus and shear modulus distributions having simple polynomial variations, which share the same fundamental frequency. The derived results can be used as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of non-homogeneous Timoshenko beams. They can also be useful for designing fixed-fixed non-homogeneous Timoshenko beams which may be required to vibrate with a particular frequency. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the governing equations for free vibration of a non-homogeneous rotating Timoshenko beam, having uniform cross-section, is studied using an inverse problem approach, for both cantilever and pinned-free boundary conditions. The bending displacement and the rotation due to bending are assumed to be simple polynomials which satisfy all four boundary conditions. It is found that for certain polynomial variations of the material mass density, elastic modulus and shear modulus, along the length of the beam, the assumed polynomials serve as simple closed form solutions to the coupled second order governing differential equations with variable coefficients. It is found that there are an infinite number of analytical polynomial functions possible for material mass density, shear modulus and elastic modulus distributions, which share the same frequency and mode shape for a particular mode. The derived results are intended to serve as benchmark solutions for testing approximate or numerical methods used for the vibration analysis of rotating non-homogeneous Timoshenko beams.
Resumo:
The transient natural convection flow with thermal stratification in a rectangular cavity filled with fluid saturated porous medium obeying Darcy's law has been studied. Prior to the time t* = 0, the flow in the cavity is assumed to be motionless and all four walls of the cavity are at the same constant temperature. At time t* = 0, the temperatures of the vertical walls are suddenly increased which vary linearly with the distance y and at the same time on the bottom wall an isothermal heat source is placed centrally. This sudden change in the wall temperatures gives rise to unsteadiness in the problem. The horizontal temperature difference induces and sustains a buoyancy driven flow in the cavity which is then controlled by the vertical temperature difference. The partial differential equations governing the transient natural convection flow have been solved numerically. The local and average Nusselt numbers decrease rapidly in a small time interval after the start of the impulsive change in the wall temperatures and the steady state is reached quickly. The time required to reach the steady state depends on the Rayleigh number and the thermal stratification parameter.
Resumo:
A wavelet spectral finite element (WSFE) model is developed for studying transient dynamics and wave propagation in adhesively bonded composite joints. The adherands are formulated as shear deformable beams using the first order shear deformation theory (FSDT) to obtain accurate results for high frequency wave propagation. Equations of motion governing wave motion in the bonded beams are derived using Hamilton's principle. The adhesive layer is modeled as a line of continuously distributed tension/compression and shear springs. Daubechies compactly supported wavelet scaling functions are used to transform the governing partial differential equations from time domain to frequency domain. The dynamic stiffness matrix is derived under the spectral finite element framework relating the nodal forces and displacements in the transformed frequency domain. Time domain results for wave propagation in a lap joint are validated with conventional finite element simulations using Abaqus. Frequency domain spectrum and dispersion relation results are presented and discussed. The developed WSFE model yields efficient and accurate analysis of wave propagation in adhesively-bonded composite joints. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Based on an ultrasound-modulated optical tomography experiment, a direct, quantitative recovery of Young's modulus (E) is achieved from the modulation depth (M) in the intensity autocorrelation. The number of detector locations is limited to two in orthogonal directions, reducing the complexity of the data gathering step whilst ensuring against an impoverishment of the measurement, by employing ultrasound frequency as a parameter to vary during data collection. The M and E are related via two partial differential equations. The first one connects M to the amplitude of vibration of the scattering centers in the focal volume and the other, this amplitude to E. A (composite) sensitivity matrix is arrived at mapping the variation of M with that of E and used in a (barely regularized) Gauss-Newton algorithm to iteratively recover E. The reconstruction results showing the variation of E are presented. (C) 2015 Optical Society of America
Resumo:
The quantum statistical mechanical propagator for a harmonic oscillator with a time-dependent force constant, m omega(2)(t), has been investigated in the past and was found to have only a formal solution in terms of the solutions of certain ordinary differential equations. Such path integrals are frequently encountered in semiclassical path integral evaluations and having exact analytical expressions for such path integrals is of great interest. In a previous work, we had obtained the exact propagator for motion in an arbitrary time-dependent harmonic potential in the overdamped limit of friction using phase space path integrals in the context of Levy flights - a result that can be easily extended to Brownian motion. In this paper, we make a connection between the overdamped Brownian motion and the imaginary time propagator of quantum mechanics and thereby get yet another way to evaluate the latter exactly. We find that explicit analytic solution for the quantum statistical mechanical propagator can be written when the time-dependent force constant has the form omega(2)(t) = lambda(2)(t) - d lambda(t)/dt where lambda(t) is any arbitrary function of t and use it to evaluate path integrals which have not been evaluated previously. We also employ this method to arrive at a formal solution of the propagator for both Levy flights and Brownian subjected to a time-dependent harmonic potential in the underdamped limit of friction. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
For obtaining dynamic response of structure to high frequency shock excitation spectral elements have several advantages over conventional methods. At higher frequencies transverse shear and rotary inertia have a predominant role. These are represented by the First order Shear Deformation Theory (FSDT). But not much work is reported on spectral elements with FSDT. This work presents a new spectral element based on the FSDT/Mindlin Plate Theory which is essential for wave propagation analysis of sandwich plates. Multi-transformation method is used to solve the coupled partial differential equations, i.e., Laplace transforms for temporal approximation and wavelet transforms for spatial approximation. The formulation takes into account the axial-flexure and shear coupling. The ability of the element to represent different modes of wave motion is demonstrated. Impact on the derived wave motion characteristics in the absence of the developed spectral element is discussed. The transient response using the formulated element is validated by the results obtained using Finite Element Method (FEM) which needs significant computational effort. Experimental results are provided which confirms the need to having the developed spectral element for the high frequency response of structures. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this article, we propose a C-0 interior penalty ((CIP)-I-0) method for the frictional plate contact problem and derive both a priori and a posteriori error estimates. We derive an abstract error estimate in the energy norm without additional regularity assumption on the exact solution. The a priori error estimate is of optimal order whenever the solution is regular. Further, we derive a reliable and efficient a posteriori error estimator. Numerical experiments are presented to illustrate the theoretical results. (c) 2015Wiley Periodicals, Inc.
Resumo:
We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie dagger-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Ito formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus. (C) 2016 AIP Publishing LLC.
Resumo:
In this paper, we seek to find nonrotating beams that are isospectral to a given tapered rotating beam. Isospectral structures have identical natural frequencies. We assume the mass and stiffness distributions of the tapered rotating beam to be polynomial functions of span. Such polynomial variations of mass and stiffness are typical of helicopter and wind turbine blades. We use the Barcilon-Gottlieb transformation to convert the fourth-order governing equations of the rotating and the nonrotating beams, from the (x, Y) frame of reference to a hypothetical (z, U) frame of reference. If the coefficients of both the equations in the (z, U) frame match with each other, then the nonrotating beam is isospectral to the given rotating beam. The conditions on matching the coefficients lead to a pair of coupled differential equations. Wesolve these coupled differential equations numerically using the fourth-order Runge-Kutta scheme. We also verify that the frequencies (given in the literature) of standard tapered rotating beams are the frequencies (obtained using the finite-element analysis) of the isospectral nonrotating beams. Finally, we present an example of beams having a rectangular cross-section to show the application of our analysis. Since experimental determination of rotating beam frequencies is a difficult task, experiments can be easily conducted on these isospectral nonrotating beams to calculate the frequencies of the rotating beam.
Resumo:
In this paper, several simplification methods are presented for shape control of repetitive structures such as symmetrical, rotational periodic, linear periodic, chain and axisymmetrical structures. Some special features in the differential equations governing these repetitive structures are examined by considering the whole structures. Based on the special properties of the governing equations, several methods are presented for simplifying their solution process. Finally, the static shape control of a cantilever symmetrical plate with piezoelectric actuator patches is demonstrated using the present simplification method. The result shows that present methods can effectively be used to find the optimal control voltage for shape control.
Resumo:
In this paper, we study some degenerate parabolic equation with Cauchy-Dirichlet boundary conditions. This problem is considered in little Holder spaces. The optimal regularity of the solution v is obtained and is specified in terms of those of the second member when some conditions upon the Holder exponent with respect to the degeneracy are satisfied. The proofs mainly use the sum theory of linear operators with or without density of domains and the results of smoothness obtained in the study of some abstract linear differential equations of elliptic type.
Resumo:
A previously published refined shear deformation theory is used to analyse free vibration of laminated shells. The theory includes the assumption that the transverse shear strains across any two layers are linearly dependent on each other. The theory has the same dependent variables as first-order shear deformation theory, hut the set of governing differential equations is of twelfth order. No shear correction factors are required. Free vibration of symmetric cross-ply laminated cylindrical shells, symmetric and antisymmetric cross-ply cylindrical panels is calculated. The numerical results are in good agreement with those from three-dimensional elasticity theory.