891 resultados para Dermal toxicity


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The natural selection of anticoagulant resistant rats has resulted in a need for an alternative to anticoagulant rodenticides which differs in both active ingredient and in the method of dosing. Cholecalciferol toxicity to rodents using the dermal route is demonstrated using a variety of penetration enhancing formulations in two in-vitro models and finally in-vivo. A 1 ml dose of 50/50 (v/v) DMSO/ethanol containing 15% (v/v) PEG 200 and 20% (w/v) cholecalciferol was judged as 'sufficiently effective' in line with the European Union's Biocidal Products Regulation (No. 528/2012) during in-vivo studies. This dose was found to cause 100% mortality in a rat population in 64.4 h (±22 h).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite of its known toxicity and potential to cause cancer, arsenic has been proven to be a very important tool for the treatment of various refractory neoplasms. One of the promising arsenic-containing chemotherapeutic agents in clinical trials is Darinaparsin (dimethylarsinous glutathione, DMA III(GS)). In order to understand its toxicity and therapeutic efficacy, the metabolism of Darinaparsin in human cancer cells was evaluated. With the aim of detecting all potential intermediates and final products of the biotransformation of Darinaparsin and other arsenicals, an analytical method employing high performance liquid chromatography inductively coupled mass spectrometry (HPLC-ICP-MS) was developed. This method was shown to be capable of separating and detecting fourteen human arsenic metabolites in one chromatographic run. The developed analytical technique was used to evaluate the metabolism of Darinaparsin in human cancer cells. The major metabolites of Darinaparsin were identified as dimethylarsinic acid (DMAV), DMA III(GS), and dimethylarsinothioyl glutathione (DMMTAV(GS)). Moreover, the method was employed to study the conditions and mechanisms of formation of thiol-containing arsenic metabolites from DMAIII(GS) and DMAV as the mechanisms of formation of these important As species were unknown. The arsenic sulfur compounds studied included but were not limited to the newly discovered human arsenic metabolite DMMTA V(GS) and the unusually highly toxic dimethylmonothioarsinic acid (DMMTAV). It was found that these species may form from hydrogen sulfide produced in enzymatic reactions or by utilizing the sulfur present in protein persulfides. Possible pathways of thiolated arsenical formation were proposed and supporting data for their existence provided. In addition to known mechanism of arsenic toxicity such as protein-binding and reactive oxygen formation, it was proposed that the utilization of thiols from protein persulfides during the formation of thiolated arsenicals may be an additional mechanism of toxicity. The toxicities of DMAV(GS), DMMTA V, and DMMTAV(GS) were evaluated in cancer cells, and the ability of these cells to take the compounds up were compared. When assessing the toxicity by exposing multiple myeloma cells to arsenicals externally, DMMTAV(GS) was much less toxic than DMAIII(GS) and DMMTAV, probably as a result of its very limited uptake (less than 10% and 16% of DMAIII(GS) and DMMTAV respectively).^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria ("blue-green algae") are known to produce a diverse repertoire of biologically active secondary metabolites. When associated with so-called "harmful algal blooms", particularly in freshwater systems, a number of these metabolites have been associated—as "toxins", or commonly "cyanotoxins"—with human and animal health concerns. In addition to the known water-soluble toxins from these genera (i.e. microcystins, cylindrospermopsin, and saxitoxins), our studies have shown that there are metabolites within the lipophilic extracts of these strains that inhibit vertebrate development in zebrafish embryos. Following these studies, the zebrafish embryo model was implemented in the bioassay-guided purification of four isolates of cyanobacterial harmful algal blooms, namely Aphanizomenon, two isolates of Cylindrospermopsis, and Microcystis, in order to identify and chemically characterize the bioactive lipophilic metabolites in these isolates. ^ We have recently isolated a group of polymethoxy-1-alkenes (PMAs), as potential toxins, based on the bioactivity observed in the zebrafish embryos. Although PMAs have been previously isolated from diverse cyanobacteria, they have not previously been associated with relevant toxicity. These compounds seem to be widespread across the different genera of cyanobacteria, and, according to our studies, suggested to be derived from the polyketide biosynthetic pathway which is a common synthetic route for cyanobacterial and other algal toxins. Thus, it can be argued that these metabolites are perhaps important contributors to the toxicity of cyanobacterial blooms. In addition to the PMAs, a set of bioactive glycosidic carotenoids were also isolated because of their inhibition of zebrafish embryonic development. These pigmented organic molecules are found in many photosynthetic organisms, including cyanobacteria, and they have been largely associated with the prevention of photooxidative damage. This is the first indication of these compounds as toxic metabolites and the hypothesized mode of action is via their biotransformation to retinoids, some of which are known to be teratogenic. Additional fractions within all four isolates have been shown to contain other uncharacterized lipophilic toxic metabolites. This apparent repertoire of lipophilic compounds may contribute to the toxicity of these cyanobacterial harmful algal blooms, which were previously attributed primarily to the presence of the known water-soluble toxins.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall objective of the research presented in this dissertation was to assess exposure to endocrine disrupting chemicals (EDCs), polychlorinated biphenyls (PCBs), phthalates, and bisphenol A (BPA) in the general population and evaluate their associations with adverse reproductive health effects, including cancers, in women. Given the proven contribution of unopposed estrogens to the risk for endometrial neoplasia or breast cancer, renewed health concerns have aroused about estrogen mimicking EDCs found in food, personal care products or as environmental contaminants. Our meta-analysis showed that exposure to estrogen mimicking PCBs increased summary risk of breast cancer and endometriosis. We further evaluated the relationship between endometriosis and breast cancer, and EDCs using a bioinformatics method. Our bioinformatics approach was able to identify genes with the potential to be involved in interaction with PCB, phthalates and BPA that may be important to the development of breast cancer and endometriosis. Therefore, we hypothesized that exposure to EDCs such as PCBs, phthalates, and BPA, results in adverse reproductive health effects in women. Using subject data and biomarkers available from the Center for Disease Controls National Health and Nutrition Examination Survey database we conducted a cross-sectional study of EDCs in relation to self-reported history of endometriosis, uterine leiomyomas, breast cancer, cervical cancer, ovarian cancer, and uterine cancer. Significantly higher body burdens of PCBs were found in women diagnosed with breast cancer, ovarian cancer, and uterine cancer compared to women without cancer. PCB 138 was significantly associated with breast cancer, cervical cancer, and uterine cancer, while PCBs 74 and 118 were significantly associated with ovarian cancer. The sum of dioxin-like PCBs were significantly associated with ovarian cancer (OR of 2.02, 95% CI: 1.06-3.85) and the sum of non-dioxin-like PCBs were significantly associated with uterine cancer (OR of 1.12, 95%CI: 1.03-1.23). Significantly higher body burdens of PCBs were also found in women diagnosed with endometriosis and uterine leiomyomas. Documenting the exposure to EDCs among the general U.S. population, and identifying agents associated with reproductive toxicity have the potential to fill research gaps and facilitate our understanding of the complex role environmental chemicals play in producing toxicity in reproductive organs.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo scopo della presente tesi è l’analisi della tossicità di nanoparticelle di ossido di zinco (nano-ZnO) verso gli organismi acquatici. In particolare, il presente studio valuta per la prima volta l'inibizione della crescita della diatomea Thalassiosira pseudonana indotta sia da nanoparticelle di dervazione industriale, che da nanoparticelle auto-estratte in laboratorio da un filtro solare. Gli esperimenti, condotti presso il Laboratorio di Ingegneria dell'Università di Miami, hanno mostrato che la tossicità indotta dalle nanoparticelle di ossido di zinco è influenzata dal tipo di nanoparticelle, nonché dalla loro concentrazione nella soluzione acquosa e dal tempo di esposizione. In particolare le nanoparticelle di derivazione industriale, più piccole rispetto alle nanoparticelle estratte dal filtro solare, hanno indotto un’inibizione della crescita superiore, specialmente a concentrazioni inferiori. Questo andamento suggerisce che ad alte concentrazioni la tossicità di nano-ZnO potrebbe essere influenzata dall’aggregazione di nanoparticelle (indipendentemente dalle dimensioni di partenza delle nanoparticelle), mentre a concentrazioni inferiori la tossicità potrebbe essere influenzata dalle dimensioni di partenza delle nanoparticelle, così come dal tipo di nanoparticelle e dal tempo di esposizione.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo studio è orientato alla determinazione dei rischi tossici posti dalle nanoparticelle di diossido di titanio rilasciate in ambiente marino. L’organismo modello utilizzato per questo studio è la diatomea Thalassiosira pseudonana, la quale è stata scelta per la sua semplicità biologica unita alla fondamentale rilevanza nella catena alimentare e nell’ecosistema marino. Oltre alle nanoparticelle prodotte industrialmente, questo studio ha lo scopo di determinare e confrontare la tossicità delle nanoparticelle utilizzate in alcuni prodotti di cura personale (in particolare crema solare e dentifricio), estraendole direttamente da essi. I nostri risultati mostrano una notevole ridondanza nel legame tra la natura (il tipo) delle nanoparticelle e l’inibizione della normale crescita delle diatomee, che supera la correlazione con tutti gli altri parametri monitorati (concentrazione di nanoparticelle, tempo di esposizione, pH, carica superficiale e dimensione delle particelle stesse), sebbene gli altri parametri risultino direttamente legati agli effetti inibitori. Tali risultati suggeriscono un’intensificazione della ricerca nell’ambito delle nanotecnologie, orientata allo sviluppo di nanomateriali “sostenibili”, ovvero dei quali sono note le potenzialità di impiego, ma anche gli aspetti negativi, che possono di conseguenza essere monitorati con maggiore consapevolezza.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of the acidification associated with CO2 leakage from sub-seabed geological storage was studied by the evaluation of the short-term effects of CO2-induced acidification on juveniles of the bivalve Ruditapes philippinarum. Laboratory scale experiments were performed using a CO2-bubbling system designed to conduct ecotoxicological assays. The organisms were exposed for 10 days to elutriates of sediments collected in different littoral areas that were subjected to various pH treatments (pH 7.1; pH 6.6; pH 6.1). The acute pH-associated effects on the bivalves were observed, and the dissolved metals in the elutriates were measured. The median toxic effect pH was calculated, which ranged from 6.33 and 6.45. The amount of dissolved Zn in the sediment elutriates increased in parallel with the pH reductions and was correlated with the proton concentrations. The pH, the pCO2 and the dissolved metal concentrations (Zn and Fe) were linked with the mortality of the exposed bivalves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors acknowledge the financial support the Scottish Government’s Rural and Environmental Sciences and Analytical Services (RESAS) in order to complete some of the soil and pore water sample analysis as well as the Czech Ministry of Education, Youth and Sports (COST CZ LD13068), the Czech Science Foundation (GAČR 14-02183P) and EU COST actionFP1407 (‘ModWoodLife’) short term scientific mission grant in order to complete the column leaching test.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of salinity on Ag toxicity was investigated in Atlantic killifish (Fundulus heteroclitus) early life-stages. Embryo mortality was significantly reduced as salinity increased and Ag(+) was converted to AgCl(solid). However, as salinity continued to rise (>5 ‰), toxicity increased to a level at least as high as observed for Ag(+) in deionized water. Rather than correlating with Ag(+), Fundulus embryo toxicity was better explained (R(2) = 0.96) by total dissolved Ag (Ag(+), AgCl2 (-), AgCl3 (2-), AgCl4 (3-)). Complementary experiments were conducted with medaka (Oryzias latipes) embryos to determine if this pattern was consistent among evolutionarily divergent euryhaline species. Contrary to Fundulus data, medaka toxicity data were best explained by Ag(+) concentrations (R(2) = 0.94), suggesting that differing ionoregulatory physiology may drive observed differences. Fundulus larvae were also tested, and toxicity did increase at higher salinities, but did not track predicted silver speciation. Alternatively, toxicity began to increase only at salinities above the isosmotic point, suggesting that shifts in osmoregulatory strategy at higher salinities might be an important factor. Na(+) dysregulation was confirmed as the mechanism of toxicity in Ag-exposed Fundulus larvae at both low and high salinities. While Ag uptake was highest at low salinities for both Fundulus embryos and larvae, uptake was not predictive of toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© The Royal Society of Chemistry 2016.Silver nanoparticles (AgNPs) are extensively used for their antibacterial properties in a diverse set of applications, ranging from the treatment of municipal wastewater to infection control in hospitals. However, the properties of AgNPs that render them conducive to bactericidal use in commerce may influence their potential toxicity to non-bacterial organisms. Based on the physiological and phylogenetic similarities between bacteria and mitochondria within eukaryotic cells, mitochondria are a likely intracellular target of AgNP toxicity. Mitochondria-specific outcomes of AgNP exposures have been identified in multiple cell types, including (but not limited to) loss of membrane potential, inhibition of enzymes involved in oxidative phosphorylation, and changes in calcium sequestration. However, the biological significance of mitochondrial toxicity due to AgNP exposure is currently incompletely understood. This review examines the existing evidence of mitochondrial toxicity induced by AgNP exposure, with discussions of the role of the physicochemical properties of the nanoparticles themselves in mitochondrial toxicity. The impacts of potentially differential cell- and tissue-specific significance of AgNP-induced mitochondrial dysfunction are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined developmental toxicity of different mercury compounds, including some used in traditional medicines. Medaka (Oryzias latipes) embryos were exposed to 0.001-10 µM concentrations of MeHg, HgCl2, α-HgS (Zhu Sha), and β-HgS (Zuotai) from stage 10 (6-7 hpf) to 10 days post fertilization (dpf). Of the forms of mercury in this study, the organic form (MeHg) proved the most toxic followed by inorganic mercury (HgCl2), both producing embryo developmental toxicity. Altered phenotypes included pericardial edema with elongated or tube heart, reduction of eye pigmentation, and failure of swim bladder inflation. Both α-HgS and β-HgS were less toxic than MeHg and HgCl2. Total RNA was extracted from survivors three days after exposure to MeHg (0.1 µM), HgCl2 (1 µM), α-HgS (10 µM), or β-HgS (10 µM) to examine toxicity-related gene expression. MeHg and HgCl2 markedly induced metallothionein (MT) and heme oxygenase-1 (Ho-1), while α-HgS and β-HgS failed to induce either gene. Chemical forms of mercury compounds proved to be a major determinant in their developmental toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall objective of the research presented in this dissertation was to assess exposure to endocrine disrupting chemicals (EDCs), polychlorinated biphenyls (PCBs), phthalates, and bisphenol A (BPA) in the general population and evaluate their associations with adverse reproductive health effects, including cancers, in women. Given the proven contribution of unopposed estrogens to the risk for endometrial neoplasia or breast cancer, renewed health concerns have aroused about estrogen mimicking EDCs found in food, personal care products or as environmental contaminants. Our meta-analysis showed that exposure to estrogen mimicking PCBs increased summary risk of breast cancer and endometriosis. We further evaluated the relationship between endometriosis and breast cancer, and EDCs using a bioinformatics method. Our bioinformatics approach was able to identify genes with the potential to be involved in interaction with PCB, phthalates and BPA that may be important to the development of breast cancer and endometriosis. Therefore, we hypothesized that exposure to EDCs such as PCBs, phthalates, and BPA, results in adverse reproductive health effects in women. Using subject data and biomarkers available from the Center for Disease Controls National Health and Nutrition Examination Survey database we conducted a cross-sectional study of EDCs in relation to self-reported history of endometriosis, uterine leiomyomas, breast cancer, cervical cancer, ovarian cancer, and uterine cancer. Significantly higher body burdens of PCBs were found in women diagnosed with breast cancer, ovarian cancer, and uterine cancer compared to women without cancer. PCB 138 was significantly associated with breast cancer, cervical cancer, and uterine cancer, while PCBs 74 and 118 were significantly associated with ovarian cancer. The sum of dioxin-like PCBs were significantly associated with ovarian cancer (OR of 2.02, 95% CI: 1.06-3.85) and the sum of non-dioxin-like PCBs were significantly associated with uterine cancer (OR of 1.12, 95%CI: 1.03-1.23). Significantly higher body burdens of PCBs were also found in women diagnosed with endometriosis and uterine leiomyomas. Documenting the exposure to EDCs among the general U.S. population, and identifying agents associated with reproductive toxicity have the potential to fill research gaps and facilitate our understanding of the complex role environmental chemicals play in producing toxicity in reproductive organs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At the Merrick Landfill, located outside of North Bay (Ontario, CA), an investigation into the potential for an environmental impact to the Little Sturgeon River as a result of landfill leachate discharge was undertaken using toxicity testing using 96 hour acute lethality on Oncorhynchus mykiss (Rainbow Trout). Landfill leachate may present a risk to receiving environments as it is comprised of an array of chemicals including organics, ammonia, and metals. Testing was conducted in three phases, firstly testing was completed on site throughout an existing natural attenuation zone where the presence of several groundwater seeps down gradient of the site had been identified to determine the effectiveness of the existing leachate control features at reducing the environmental risks. These tests indicated that the existing capture strategies were largely effective at reducing toxicity risks to the receiving environment. Testing was also completed on two pilot-scale hybrid-passive treatment systems to determine their effectiveness for leachate treatment. Summer performance of a constructed gravel wetland system was also shown to be effective at reducing the toxicity of the landfill leachate at the site. Lastly in order to support evaluation of leachate treatment requirements, a toxicity identification evaluation (TIE) was performed to determine the principle cause of toxicity within the leachate. Based on water chemistry analyses of samples collected at various locations at the site, the TIE identified ammonia toxicity as the primary source of toxicity in the leachate, with a secondary focus on metal toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bevacizumab is considered an established part of the treatment strategies available for schwannomas in patients with Neurofibromatosis Type 2(NF2). In the UK, it is available through NHS National Specialized Commissioning to NF2 patients with a rapidly growing target schwannoma. Regrowth of the tumour on suspension of treatment is often observed resulting in prolonged periods of exposure to bevacizumab to control the disease. Hypertension and proteinuria are common events with bevacizumab use and there are concerns with regards to the long-term risks of prolonged treatment. Dosing, demographic and adverse event(CTCAE 4.03) data from the UK NF2 bevacizumab cohort are reviewed with particular consideration of renal and cardiovascular complications. Eighty patients (48 male:32female), median age 24.5 years (range 11-66years), were followed for a median of 32.7 months (range 12.0–60.2months). The most common adverse events were fatigue, hypertension and infection. A total of 19/80 patients (24%) had either a grade 2 or grade 3 hypertension event and 14/80 patients (17.5%) had proteinuria. Of 36 patients followed for 36 months, 78% were free from hypertension and 86% were free of proteinuria. Logistic regression modeling identified age and induction dosing regime to be predictors of development of hypertension with dose of 7.5mg/kg three weekly and age >30years having higher rates of hypertension. Proteinuria persisted in one of three patients after cessation of bevacizumab. One patient developed congestive heart failure and the details of this case are described. Further work is needed to determine optimal dosing regimes to limit toxicity without impacting on efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanotechnology is a multidisciplinary science that is having a boom today, providing new products with attractive physicochemical properties for many applications. In agri/feed/food sector, nanotechnology offers great opportunities for obtaining products and innovative applications for agriculture and livestock, water treatment and the production, processing, storage and packaging of food. To this end, a wide variety of nanomaterials, ranging from metals and inorganic metal oxides to organic nanomaterials carrying bioactive ingredients are applied. This review shows an overview of current and future applications of nanotechnology in the food industry. Food additives and materials in contact with food are now the main applications, while it is expected that in the future are in the field of nano-encapsulated and nanocomposites in applications as novel foods, additives, biocides, pesticides and materials food contact.