995 resultados para DNA MINOR-GROOVE
Resumo:
The integration of the Human Immunodeficiency Virus (HIV) genetic information into the host genome is fundamental for its replication and long-term persistence in the host. Isolating and characterizing the integration sites can be useful for obtaining data such as identifying the specific genomic location of integration or understanding the forces dictating HIV integration site selection. The methods outlined in this article describe a highly efficient and precise technique for identifying HIV integration sites in the host genome on a small scale using molecular cloning techniques and standard sequencing or on a massive scale using 454 pyrosequencing.
Resumo:
X-chromosome inactivation (XCI) is a dosage compensation mechanism that silences the majority of genes on one X chromosome in each female cell. To characterize epigenetic changes that accompany this process, we measured DNA methylation levels in 45,X patients carrying a single active X chromosome (X(a)), and in normal females, who carry one X(a) and one inactive X (X(i)). Methylated DNA was immunoprecipitated and hybridized to high-density oligonucleotide arrays covering the X chromosome, generating epigenetic profiles of active and inactive X chromosomes. We observed that XCI is accompanied by changes in DNA methylation specifically at CpG islands (CGIs). While the majority of CGIs show increased methylation levels on the X(i), XCI actually results in significant reductions in methylation at 7% of CGIs. Both intra- and inter-genic CGIs undergo epigenetic modification, with the biggest increase in methylation occurring at the promoters of genes silenced by XCI. In contrast, genes escaping XCI generally have low levels of promoter methylation, while genes that show inter-individual variation in silencing show intermediate increases in methylation. Thus, promoter methylation and susceptibility to XCI are correlated. We also observed a global correlation between CGI methylation and the evolutionary age of X-chromosome strata, and that genes escaping XCI show increased methylation within gene bodies. We used our epigenetic map to predict 26 novel genes escaping XCI, and searched for parent-of-origin-specific methylation differences, but found no evidence to support imprinting on the human X chromosome. Our study provides a detailed analysis of the epigenetic profile of active and inactive X chromosomes.
Resumo:
Two minor saponins obtained from the methanolic extract of the leaves of Ilex paraguariensis have been characterised by 13C-NMR, 1H-NMR, API-MS and chemical hydrolysis as oleanolic acid-3-O-(beta-D-glucopyranosyl-(1-->3)-alpha-L-arabinopyranosyl)-(28-->1)- beta-D-glucopyranosyl ester (guaiacin B) and oleanolic acid-3-O-(beta-D-glucopyranosyl-(1-->3)-(alpha-L-rhamnopyranosyl- (1-->2))-alpha-L-arabinopyranosyl)-(28-->1)-beta-D-glucopyranosyl ester (nudicaucin C). Both are isomeric forms of the known matesaponins 1 (MSP 1) and 2 (MSP 2) and differ only by the nature of the aglycone: they have oleanolic acid instead of ursolic acid, as found in the matesaponins. These minor saponins have not been fully separated from their major isomers MSP 1 and 2 and were characterised by in-mixture NMR analysis, LC-MS and LC-MSn experiments.
Resumo:
The length of female reproductive lifespan is associated with multiple adverse outcomes, including breast cancer, cardiovascular disease and infertility. The biological processes that govern the timing of the beginning and end of reproductive life are not well understood. Genetic variants are known to contribute to ∼50% of the variation in both age at menarche and menopause, but to date the known genes explain <15% of the genetic component. We have used genome-wide association in a bivariate meta-analysis of both traits to identify genes involved in determining reproductive lifespan. We observed significant genetic correlation between the two traits using genome-wide complex trait analysis. However, we found no robust statistical evidence for individual variants with an effect on both traits. A novel association with age at menopause was detected for a variant rs1800932 in the mismatch repair gene MSH6 (P = 1.9 × 10(-9)), which was also associated with altered expression levels of MSH6 mRNA in multiple tissues. This study contributes to the growing evidence that DNA repair processes play a key role in ovarian ageing and could be an important therapeutic target for infertility.
Resumo:
Highly-active antiretroviral therapy (HAART) can induce a characteristic lipodystrophy syndrome characterized by peripheral fat wasting and central adiposity, usually associated with hyperlipidaemia and insulin resistance [1,2]. Indirect data have led some authors to propose that mitochondrial dysfunction could play a role in this syndrome [3,4].To date, as recently outlined by Kakuda et al. [5] in this journal, HIV-infected patients developing lipodystrophy have not been studied for mitochondrial changes or respiratory chain capacity...
Resumo:
O ácido desoxiribunocléico ribossomal (rDNA) é utilizado como uma ferramenta importante para caracterizar o polimorfismo entre os fungos. Existem muitas cópias de rDNA as quais são arranjadas por espaços não codificados. Essas cópias são altamente conservadas entre espécies de fungos. O objetivo deste trabalho foi estudar a região do Espaço Interno Transcrito (ITS) e analisar as diferenças no polimorfismo da seqüência dessa região no fungo Scleroderma UFSMSc1 com seqüências dos isolados de Scleroderma e Pisolithus do banco de dados GenBank. O DNA do isolado de Scleroderma UFSMSc1 foi extraído por meio da solução de extração à base de CTAB. A partir do DNA, foram feitas reações de PCR com os oligonucleotídeos iniciadores universais ITS1 e ITS4, cujo produto amplificado foi purificado e seqüenciado. A região do ITS do fungo mostrou uma banda simples de aproximadamente 650 pares de base. Na análise da seqüência dessa região em comparação com algumas depositadas no GenBank, observou-se a formação de agrupamento com espécies de Scleroderma. Os resultados mostraram que essa técnica favorece a identificação de espécies de Scleroderma, visto que tais fungos são difíceis de ser identificados apenas por seus caracteres morfológicos.
Resumo:
Success of species assignment using DNA barcodes has been shown to vary among plant lineages because of a wide range of different factors. In this study, we confirm the theoretical prediction that gene flow influences species assignment with simulations and a literature survey. We show that the genome experiencing the highest gene flow is, in the majority of the cases, the best suited for species delimitation. Our results clearly suggest that, for most angiosperm groups, plastid markers will not be the most appropriate for use as DNA barcodes. We therefore advocate shifting the focus from plastid to nuclear markers to achieve an overall higher success using DNA barcodes.
Simulations of action of DNA topoisomerases to investigate boundaries and shapes of spaces of knots.
Resumo:
The configuration space available to randomly cyclized polymers is divided into subspaces accessible to individual knot types. A phantom chain utilized in numerical simulations of polymers can explore all subspaces, whereas a real closed chain forming a figure-of-eight knot, for example, is confined to a subspace corresponding to this knot type only. One can conceptually compare the assembly of configuration spaces of various knot types to a complex foam where individual cells delimit the configuration space available to a given knot type. Neighboring cells in the foam harbor knots that can be converted into each other by just one intersegmental passage. Such a segment-segment passage occurring at the level of knotted configurations corresponds to a passage through the interface between neighboring cells in the foamy knot space. Using a DNA topoisomerase-inspired simulation approach we characterize here the effective interface area between neighboring knot spaces as well as the surface-to-volume ratio of individual knot spaces. These results provide a reference system required for better understanding mechanisms of action of various DNA topoisomerases.
Resumo:
BACKGROUND: Congenital, nonepidermolytic cornification disorders phenotypically resembling human autosomal recessive ichthyosis have been described in purebred dog breeds, including Jack Russell terrier (JRT) dogs. One cause of gene mutation important to humans and dogs is transposon insertions. OBJECTIVES: To describe an autosomal recessive, severe nonepidermolytic ichthyosis resembling lamellar ichthyosis (LI) in JRT dogs due to insertion of a long interspersed nucleotide element (LINE-1) in the transglutaminase 1 (TGM1) gene. METHODS: Dogs were evaluated clinically, and skin samples were examined by light and electron microscopy. Phenotypic information and genotyping with a canine microsatellite marker suggested TGM1 to be a candidate gene. Genomic DNA samples and cDNA generated from epidermal RNA were examined. Consequences of the mutation were evaluated by Western blotting, quantitative reverse transcription-polymerase chain reaction (RT-PCR) and enzyme activity from cultured keratinocytes. RESULTS: Affected dogs had generalized severe hyperkeratosis. Histological examination defined laminated to compact hyperkeratosis without epidermolysis; ultrastructurally, cornified envelopes were thin. Affected dogs were homozygous for a 1980-bp insertion within intron 9 of TGM1. The sequence of the insertion was that of a canine LINE-1 element. Quantitative RT-PCR indicated a significant decrease in TGM1 mRNA in affected dogs compared with wild-type. TGM1 protein was markedly decreased on immunoblotting, and membrane-associated enzyme activity was diminished in affected dogs. CONCLUSIONS: Based on morphological and molecular features, this disease is homologous with TGM1-deficient LI in humans, clinically models LI better than the genetically modified mouse and represents its first spontaneous animal model. This is the first reported form of LI due to transposon insertion.
Resumo:
The ecdysone-responsive DNA sequence of the Drosophila hsp27 gene promoter contains four direct and inverted repeats reminiscent of those that compose the vertebrate palindromic estrogen response element (ERE) and the thyroid hormone/retinoic acid response element (TRE/RRE). Interestingly, a 3 bp substitution in the wild-type Hsp27 ecdysone response element (EcdRE) increases both its similarity with the vertebrate ERE and TRE/RRE and its capacity to confer ecdysone responsiveness to a heterologous promoter. Remarkably, increasing the spacing between the inverted repeats of this strong EcdRE by two nucleotides converts it into an ERE. Inversely, decreasing the spacing between the two inverted repeats of the vertebrate consensus palindromic ERE, from three to one nucleotide, converts it into a functional EcdRE. Thus, the only difference between an invertebrate EcdRE and a vertebrate palindromic ERE or TRE/RRE is in the spacing between the conserved inverted repeated motifs forming these palindromic HREs. The finding that the sequence motif 5'-GGTCA-3' present in the vertebrate ERE and TRE/RRE is also a functionally important characteristic of an invertebrate HRE, suggests that a common ancestor regulatory DNA sequence gave rise to all HREs known so far. We discuss the possibility that this progenitor motif is the GGTCA sequence.
Resumo:
The distribution of mitochondrial control region-sequence polymorphism was investigated in 15 populations of Crocidura russula along an altitudinal gradient in western Switzerland. High-altitude populations are smaller, sparser and appear to undergo frequent bottlenecks. Accordingly, they showed a loss of rare haplotypes, but unexpectedly, were less differentiated than lowland populations. Furthermore, the major haplotypes segregated significantly with altitude. The results were inconsistent with a simple model of drift and dispersal. They suggested instead a role for historical patterns of colonization, or, alternatively, present-day selective forces acting on one of the mitochondrial genes involved in metabolic pathways.
Resumo:
The SOS screen, as originally described by Perkins et al. (1999) [7], was setup with the aim of identifying Arabidopsis functions that might potentially be involved in the DNA metabolism. Such functions, when expressed in bacteria, are prone to disturb replication and thus trigger the SOS response. Consistently, expression of AtRAD51 and AtDMC1 induced the SOS response in bacteria, even affecting E. coli viability. 100 SOS-inducing cDNAs were isolated from a cDNA library constructed from an Arabidopsis cell suspension that was found to highly express meiotic genes. A large proportion of these SOS(+) candidates are clearly related to the DNA metabolism, others could be involved in the RNA metabolism, while the remaining cDNAs encode either totally unknown proteins or proteins that were considered as irrelevant. Seven SOS(+) candidate genes are induced following gamma irradiation. The in planta function of several of the SOS-inducing clones was investigated using T-DNA insertional mutants or RNA interference. Only one SOS(+) candidate, among those examined, exhibited a defined phenotype: silenced plants for DUT1 were sensitive to 5-fluoro-uracil (5FU), as is the case of the leaky dut-1 mutant in E. coli that are affected in dUTPase activity. dUTPase is essential to prevent uracil incorporation in the course of DNA replication.
Resumo:
DNA methylation is involved in a diversity of processes in bacteria, including maintenance of genome integrity and regulation of gene expression. Here, using Caulobacter crescentus as a model, we exploit genome-wide experimental methods to uncover the functions of CcrM, a DNA methyltransferase conserved in most Alphaproteobacteria. Using single molecule sequencing, we provide evidence that most CcrM target motifs (GANTC) switch from a fully methylated to a hemi-methylated state when they are replicated, and back to a fully methylated state at the onset of cell division. We show that DNA methylation by CcrM is not required for the control of the initiation of chromosome replication or for DNA mismatch repair. By contrast, our transcriptome analysis shows that >10% of the genes are misexpressed in cells lacking or constitutively over-expressing CcrM. Strikingly, GANTC methylation is needed for the efficient transcription of dozens of genes that are essential for cell cycle progression, in particular for DNA metabolism and cell division. Many of them are controlled by promoters methylated by CcrM and co-regulated by other global cell cycle regulators, demonstrating an extensive cross talk between DNA methylation and the complex regulatory network that controls the cell cycle of C. crescentus and, presumably, of many other Alphaproteobacteria.