977 resultados para DIELECTRIC REFLECTION GRATINGS
Resumo:
We present a theoretical analysis of a novel scheme for optical cooling of particles that does not in principle require a closed optical transition. A tightly confined laser beam interacting with a trapped particle experiences a phase shift, which upon reflection from a mirror or resonant microstructure produces a time-delayed optical potential for the particle. This leads to a nonconservative force and friction. A quantum model of the system is presented and analyzed in the semiclassical limit.
Resumo:
The excitation of surface plasmon-polariton (SPP) waveguide modes in subwavelength dielectric ridges deposited on a thin gold film has been characterized and optimized at telecommunication wavelengths. The experimental data on the electromagnetic mode structure obtained using scanning near-field optical microscopy have been directly compared to full vectorial three-dimensional finite element method simulations. Two excitation geometries have been investigated where SPPs are excited outside or inside the dielectric tapered region adjoint to the waveguide. The dependence of the efficiency of the SPP guided mode excitation on the taper opening angle has been measured and modeled. Single-mode guiding and strong lateral mode confinement of dielectric-loaded SPP waveguide modes have been characterized with the near-field measurements and compared to the effective-index method model.
Resumo:
A reconfigurable reflectarray which exploits the dielectric anisotropy of liquid crystals (LC) has been designed to operate in the frequency range from 96 to 104 GHz. The unit cells are composed of three unequal length parallel dipoles placed above an LC substrate. The reflectarray has been designed using an accurate model which includes the effects of anisotropy and inhomogeneity. An effective permittivity that accounts for the real effects of the LC has also been used to simplify the analysis and design of the unit cells. The geometrical parameters of the cells have been adjusted to simultaneously improve the bandwidth, maximize the tunable phase-range and reduce the sensitivity to the angle of incidence. The performance of the LC based unit cells has been experimentally evaluated by measuring the reflection amplitude and phase of a reflectarray consisting of 52x54 identical cells. The good agreement between measurements and simulations validate the analysis and design techniques and demonstrate the capabilities of the proposed reflectarray to provide beam scanning in F band.
Resumo:
Germanium is an attractive channel material for MOSFETs because of its higher mobility than silicon. In this paper, GeO2 has been investigated as an interfacial layer for high-kappa gate stacks on germanium. Thermally grown GeO2 layers have been prepared at 550 degrees C to minimise GeO volatilisation. GeO2 growth has been performed in both pure O-2 ambient and O-2 diluted with N-2. GeO2 thickness has been scaled down to approximately 3 nm. MOS capacitors have been fabricated using different GeO2 thicknesses with a standard high-kappa dielectric on top. Electrical properties and thermal stability have been tested up to at least 350 degrees C. The K value of GeO2 was experimentally determined to be 4.5. Interface state densities (D-it) of less than 10(12) CM-2 eV(-1) have been extracted for all devices using the conductance method.
Resumo:
The dielectric properties of pharmaceutical powder-(paracetamol, aspirin, lactose, maize starch, adipic acid) solvent (water) mixtures were measured at 2,450 MHz at a range of moisture contents (0-1.0 kg kg(-1), dry basis) and temperatures (20-70 A degrees C). The dielectric constant (epsilon'), loss factor (epsilon aEuro(3)) and penetration depth (d (p)) were found to be dependent on frequency, moisture content, temperature and powder type. For powder-water mixtures, a linear increase in the dielectric properties with moisture content was observed, whilst the temperature dependence was of quadratic form. The penetration depth was also significantly affected by temperature and moisture content. Although, epsilon aEuro(3) also increased with increasing temperature, variation with moisture content was temperature dependent. This information on dielectric properties is essential for mathematical description of the pharmaceutical product temperature history during microwave heating and for the design of microwave drying equipment.
Resumo:
Presented is a design methodology which permits the application of distributed coupled resonator bandpass filter principles to form wideband small-aperture evanescent-mode waveguide antenna designs. This approach permits matching of the complex antenna aperture admittance of an evanescent-mode open-ended waveguide to a real impedance generator, and thereby to a coaxial feed probe. A simulated reflection coefficient of < - 10 dB was obtained over a bandwidth of 20%, from 2.0-2.45 GHz, in a 2.58 GHz cutoff waveguide. Dielectric-filled propagating waveguide and air-filled evanescent-mode waveguide sections are used to form the resonators/coupling elements of the antenna's coupled resonator matching sections. Simulated realised gain variation from 3.4-5.0 dBi is observed across the bandwidth. The antenna's maximum aperture dimension is < 0.47 wavelength at the upper operating frequency and so it is suitable for use in a wide angle scanning phased array.
Resumo:
The combinatorial frequency generation by the periodic stacks of binary layers of anisotropic nonlinear dielectrics is examined. The products of nonlinear scattering are characterised in terms of the three-wave mixing processes. It is shown that the intensity of the scattered waves of combinatorial frequencies is strongly influenced by the constitutive and geometrical parameters of the anisotropic layers, and the frequency ratio and angles of incidence of pump waves. The enhanced efficiency of the frequency conversion at Wolf-Bragg resonances has been demonstrated for the lossless and lossy-layered structures. © 2012 O. V. Shramkova and A. G. Schuchinsky.
Resumo:
The features of artificial surfaces composed of doubly periodic patterns of interwoven planar conductors are discussed. The free-standing intertwined quadrifilar spirals and modified Brigid's crosses are presented as illustrative examples to demonstrate the highly stable angular reflection and transmittance response with low cross-polarisation and a broad fractional bandwidth. The main mechanisms contributing to the substantially sub-wavelength response of these arrays are discussed showing that interweaving their conductor patterns provides concurrent control of both the equivalent capacitance and inductance of the unit cell. The effects of dielectric substrate and conductor thickness on the properties of intertwined spiral and modified Brigid's cross arrays are discussed to provide insight in the effect of the structure parameters on array performance.
Resumo:
The combinatorial frequency generation by a Fibonacci type quasi-periodic dielectric multilayered structure illuminated by two plane waves has been analysed. The effects of the layer parameters and Fibonacci sequence order on the properties of the combinatorial frequency waves emitted from the stacked nonlinear layers are discussed.