830 resultados para DHP vesicle
Resumo:
This study aimed to evaluate different concentrations of kisspeptin, as well as the interaction of kisspeptin and FSH/LH in vitro maturation and oocyte competence in cattle. In Experiment 1 was determined the minimum concentration of Kisspeptin (Kp) to be used, and in Experiment 2 was evaluated its interection with FSH and LH. The oocytes were collected in a commercial slaughterhouse and only Grade I oocytes were utilized. The oocytes were cultured in TCM-199 medium with bicarbonate plus 10% FBS, sodium pyruvate (22μg/mL), amikacin (83mg/mL), FSH (0.5μg/mL), with different concentrations of Kp, the treatments were: FSH + 0M Kp-10; FSH + 10-7M Kp-10, FSH + 10-6M Kp-10; FSH + 10-5M Kp-10. In Experiment 2, was used better concentration of Kp found in Experiment 1, the following treatments: no hormones; FSH; FSH + Kp-10; FSH + LH; FSH, LH + Kp-10; Kp-10. The oocyte competence was determined by nuclear maturation, mitochondrial distribution, MitoTracker® Orange CMTMRos fluorescence intensity and DCF. The evaluation of nuclear maturation was made after 24 hours incubation and the oocytes were stained with DAPI to determine the nuclear stage (Germinal Vesicle-GV, Metaphase I-MI and Metaphase II-MII).The mitochondrial distribution was classified as peripheral/semiperipheral and diffuse in clusters/granules, evaluated after stained with the MitoTracker® Orange CMTMRos, and was also identified the intensity of it. To determine the intensity of ROS oocytes were stained with DCF. The statistical analysis was performed by SAS GLIMMIX PROC. In Experiment 1 oocytes matured only with the FSH reached a smaller nuclear maturation when compared to those who were matured with Kisspeptin at different concentrations (FSH:13/33; FSH + 10-7M Kp-10: 28/35; FSH + 10-6M Kp-10:30/34; FSH + 10-5M Kp-10:28/32; P=0,0001). There was no statistical difference in mitochondrial distribution between treatments (P>0.05). The fluorescence intensity of MitoTracker did not differ among treatments (P>0.05). The DCF fluorescence intensity was lower when the concentration of Kp was increased in the medium (FSH:12177726,1; FSH + 10-7M Kp-10:10945982,83; FSH + 10-6M Kp-10:9820536,53; FSH + 10-5M Kp-10:9147016,38; P<0,0001). Based in the Experiment 1 results, the concentration of Kp was determined in 10-7M. In Experiment 2 the mitochondrial distribution was different between treatments, because oocytes matured only with Kp or FSH+LH, reached a oocyte competence greater than those maturated with FSH only or without hormone addition (no hormones:66,66%; FSH:66,66%; FSH + Kp-10:75,86%; FSH + LH:91,17%; FSH, LH + Kp-10:82,85%; Kp-10:91,17%; P<0,05). The no hormones resulted in a lower nuclear maturation than the other treatments (no hormones: 5/18; FSH:18/32; FSH + Kp-10:22/29; FSH + LH:26/33; FSH, LH + Kp-10:26/34; Kp-10:25/34; P=0,0094). The fluorescence intensity of probes MitoTracker and DCF was lower when Kp was added to the maturation medium (no hormones:1228363/540069; FSH:2307984/1395751; FSH + Kp-10:1941890/1114948; FSH + LH:2502145/1722376; FSH, LH + Kp-10:2286173/1467782; Kp-10:1859411/979325 P<0,0001). So this is the first study that shows that Kisspeptin stimulates oocyte maturation without the presence of gonadotropins in the maturation medium.
Resumo:
Polarization is important for the function and morphology of many different cell types. The keys regulators of polarity in eukaryotes are the Rho-family GTPases. In the budding yeast Saccharomyces cerevisiae, which must polarize in order to bud and to mate, the master regulator is the highly conserved Rho GTPase, Cdc42. During polarity establishment, active Cdc42 accumulates at a site on the plasma membrane characterizing the “front” of the cell where the bud will emerge. The orientation of polarization is guided by upstream cues that dictate the site of Cdc42 clustering. However, in the absence of upstream cues, yeast can still polarize in a random direction during symmetry breaking. Symmetry breaking suggests cells possess an autocatalytic polarization mechanism that can amplify stochastic fluctuations of polarity proteins through a positive feedback mechanism.
Two different positive feedback mechanisms have been proposed to polarize Cdc42 in budding yeast. One model posits that Cdc42 activation must be localized to a site at the plasma membrane. Another model posits that Cdc42 delivery must be localized to a particular site at the plasma membrane. Although both mechanisms could work in parallel to polarize Cdc42, it is unclear which mechanism is critical to polarity establishment. We directly tested the predictions of the two positive feedback models using genetics and live microscopy. We found that localized Cdc42 activation is necessary for polarity establishment.
While this explains how active Cdc42 localizes to a particular site at the plasma membrane, it does not address how Cdc42 concentrates at that site. Several different mechanisms have been proposed to concentrate Cdc42. The GDI can extract Cdc42 from membranes and selective mobilize GDP-Cdc42 in the cytoplasm. It was proposed that selectively mobilizing GDP-Cdc42 in combination with local activation could locally concentrate total Cdc42 at the polarity site. Although the GDI is important for rapid Cdc42 accumulation at the polarity site, it is not essential to Cdc42 concentration. It was proposed that delivery of Cdc42 by actin-mediated vesicle can act as a backup pathway to concentrate Cdc42. However, we found no evidence for an actin-dependent concentrating pathway. Live microscopy experiments reveal that prenylated proteins are not restricted to membranes, and can enter the cytoplasm. We found that the GDI-independent concentrating pathway still requires Cdc42 to exchange between the plasma membrane and the cytoplasm, which is supported by computational modeling. In the absence of the GDI, we found that Cdc42 GAP became essential for polarization. We propose that the GAP limits GTP-Cdc42 leak into the cytoplasm, which would be prohibitive to Cdc42 polarization.
Resumo:
Bud formation by Saccharomyces cerevisiae is a fundamental process for yeast proliferation. Bud emergence is initiated by the polarization of the cytoskeleton, leading to local secretory vesicle delivery and gulcan synthase activity. The master regulator of polarity establishment is a small Rho-family GTPase – Cdc42. Cdc42 forms a clustered patch at the incipient budding site in late G1 and mediates downstream events which lead to bud emergence. Cdc42 promotes morphogenesis via its various effectors. PAKs (p21-activated kinases) are important Cdc42 effectors which mediate actin cytoskeleton polarization and septin filament assembly. The PAKs Cla4 and Ste20 share common binding domains for GTP-Cdc42 and they are partially redundant in function. However, we found that Cla4 and Ste20 behaved differently during the polarization and this depended on their different membrane interaction domains. Also, Cla4 and Ste20 compete for a limited number of binding sites at the polarity patch during bud emergence. These results suggest that PAKs may be differentially regulated during polarity establishment.
Morphogenesis of yeast must be coordinated with the nuclear cycle to enable successful proliferation. Many environmental stresses temporarily disrupt bud formation, and in such circumstances, the morphogenesis checkpoint halts nuclear division until bud formation can resume. Bud emergence is essential for degradation of the mitotic inhibitor, Swe1. Swe1 is localized to the septin cytoskeleton at the bud neck by the Swe1-binding protein Hsl7. Neck localization of Swe1 is required for Swe1 degradation. Although septins form a ring at the presumptive bud site prior to bud emergence, Hsl7 is not recruited to the septins until after bud emergence, suggesting that septins and/or Hsl7 respond to a “bud sensor”. Here we show that recruitment of Hsl7 to the septin ring depends on a combination of two septin-binding kinases: Hsl1 and Elm1. We elucidate which domains of these kinases are needed, and show that artificial targeting of those domains suffices to recruit Hsl7 to septin rings even in unbudded cells. Moreover, recruitment of Elm1 is responsive to bud emergence. Our findings suggest that Elm1 plays a key role in sensing bud emergence.
Resumo:
Rab GTPases are the largest family of the Ras superfamily and are key regulators of membrane trafficking within the cell. There are over 60 members of the Rab family which localise to specific membrane compartments and interact with effector proteins to regulate membrane trafficking processes, such as vesicle formation, vesicle trafficking within the cell and fusion with an acceptor compartment. Multiple effector proteins have been identified for many Rabs, some of which can interact with more than one Rab to link their function at a specific membrane location or to link them together in a Rab activation cascade. Rabin8 is one such protein which is an effector for Rab11a and a Guanine nucleotide Exchange Factor (GEF) for Rab8a. Rabin8 participates in a conserved Rab activation cascade which is critical in the formation of primary cilia. Data presented in this thesis has shown that GRAB interacts with Rab3a, Rab8a, Rab11a and Rab11b in a nucleotide dependent manner. Furthermore, the minimal interacting regionbetween these proteins has been investigated. The functional outcome of GRAB knockdown has also been examined and data in this thesis highlights the phenotypic outcome.
Resumo:
La circulation extracorporelle (CEC) est une technique utilisée en chirurgie cardiaque effectuée des milliers de fois chaque jour à travers le monde. L’instabilité hémodynamique associée au sevrage de la CEC difficile constitue la principale cause de mortalité en chirurgie cardiaque et l’hypertension pulmonaire (HP) a été identifiée comme un des facteurs de risque les plus importants. Récemment, une hypothèse a été émise suggérant que l'administration prophylactique (avant la CEC) de la milrinone par inhalation puisse avoir un effet préventif et faciliter le sevrage de la CEC chez les patients atteints d’HP. Toutefois, cette indication et voie d'administration pour la milrinone n'ont pas encore été approuvées par les organismes réglementaires. Jusqu'à présent, la recherche clinique sur la milrinone inhalée s’est principalement concentrée sur l’efficacité hémodynamique et l'innocuité chez les patients cardiaques, bien qu’aucun biomarqueur n’ait encore été établi. La dose la plus appropriée pour l’administration par nébulisation n'a pas été déterminée, de même que la caractérisation des profils pharmacocinétiques (PK) et pharmacodynamiques (PD) suite à l'inhalation. L'objectif de notre recherche consistait à caractériser la relation exposition-réponse de la milrinone inhalée administrée chez les patients subissant une chirurgie cardiaque sous CEC. Une méthode analytique par chromatographie liquide à haute performance couplée à un détecteur ultraviolet (HPLC-UV) a été optimisée et validée pour le dosage de la milrinone plasmatique suite à l’inhalation et s’est avérée sensible et précise. La limite de quantification (LLOQ) était de 1.25 ng/ml avec des valeurs de précision intra- et inter-dosage moyennes (CV%) <8%. Des patients souffrant d’HP pour lesquels une chirurgie cardiaque sous CEC était prévue ont d’abord été recrutés pour une étude pilote (n=12) et, par la suite, pour une étude à plus grande échelle (n=28) où la milrinone (5 mg) était administrée par inhalation pré-CEC. Dans l'étude pilote, nous avons comparé l'exposition systémique de la milrinone peu après son administration avec un nébuliseur pneumatique ou un nébuliseur à tamis vibrant. L’efficacité des nébuliseurs en termes de dose émise et dose inhalée a également été déterminée in vitro. Dans l'étude à plus grande échelle conduite en utilisant exclusivement le nébuliseur à tamis vibrant, la dose inhalée in vivo a été estimée et le profil pharmacocinétique de la milrinone inhalée a été pleinement caractérisé aux niveaux plasmatique et urinaire. Le ratio de la pression artérielle moyenne sur la pression artérielle pulmonaire moyenne (PAm/PAPm) a été choisi comme biomarqueur PD. La relation exposition-réponse de la milrinone a été caractérisée pendant la période d'inhalation en étudiant la relation entre l'aire sous la courbe de l’effet (ASCE) et l’aire sous la courbe des concentrations plasmatiques (ASC) de chacun des patients. Enfin, le ratio PAm/PAPm a été exploré comme un prédicteur potentiel de sortie de CEC difficile dans un modèle de régression logistique. Les expériences in vitro ont démontré que les doses émises étaient similaires pour les nébuliseurs pneumatique (64%) et à tamis vibrant (68%). Cependant, la dose inhalée était 2-3 fois supérieure (46% vs 17%) avec le nébuliseur à tamis vibrant, et ce, en accord avec les concentrations plasmatiques. Chez les patients, en raison des variations au niveau des facteurs liés au circuit et au ventilateur causant une plus grande dose expirée, la dose inhalée a été estimée inférieure (30%) et cela a été confirmé après récupération de la dose de milrinone dans l'urine 24 h (26%). Les concentrations plasmatiques maximales (Cmax: 41-189 ng/ml) et l'ampleur de la réponse maximale ΔRmax-R0 (0-65%) ont été observées à la fin de l'inhalation (10-30 min). Les données obtenues suite aux analyses PK sont en accord avec les données publiées pour la milrinone intraveineuse. Après la période d'inhalation, les ASCE individuelles étaient directement reliées aux ASC (P=0.045). Enfin, notre biomarqueur PD ainsi que la durée de CEC ont été identifiés comme des prédicteurs significatifs de la sortie de CEC difficile. La comparaison des ASC et ASCE correspondantes a fourni des données préliminaires supportant une preuve de concept pour l'utilisation du ratio PAm/PAPm comme biomarqueur PD prometteur et justifie de futures études PK/PD. Nous avons pu démontrer que la variation du ratio PAm/PAPm en réponse à la milrinone inhalée contribue à la prévention de la sortie de CEC difficile.
Resumo:
An up to 2-cm thick Chicxulub ejecta deposit marking the Cretaceous-Paleogene (K-Pg) boundary (the "K-T" boundary) was recovered in six holes drilled during ODP Leg 207 (Demerara Rise, tropical western Atlantic). Stunning features of this deposit are its uniformity over an area of 30 km2 and the total absence of bioturbation, allowing documentation of the original sedimentary sequence. High-resolution mineralogical, petrological, elemental, isotopic (Sr-Nd), and rock magnetic data reveal a distinct microstratigraphy and a range of ejecta components. The deposit is normally graded and composed predominantly of rounded, 0.1- to max. 1-mm sized spherules. Spherules are altered to dioctahedral aluminous smectite, though occasionally relict Si-Al-rich hydrated glass is also present, suggesting acidic precursor lithologies. Spherule textures vary from hollow to vesicle-rich to massive; some show in situ collapse, others include distinct Fe-Mg-Ca-Ti-rich melt globules and lath-shaped Al-rich quench crystals. Both altered glass spherules and the clay matrix (Site 1259B) display strongly negative epsilon-Nd (T=65Ma) values (-17) indicating uptake of Nd from contemporaneous ocean water during alteration. Finally, Fe-Mg-rich spherules, shocked quartz and feldspar grains, few lithic clasts, as well as abundant accretionary and porous carbonate clasts are concentrated in the uppermost 0.5-0.7 mm of the deposit. The carbonate clasts display in part very unusual textures, which are interpreted to be of shock-metamorphic origin. The preservation of delicate spherule textures, normal grading with lack of evidence for traction transport, and sub-millimeter scale compositional trends provide evidence for this spherule deposit representing a primary air-fall deposit not affected by significant reworking. The ODP Leg 207 spherule deposit is the first known dual-layer K-Pg boundary in marine settings; it incorporates compositional and stratigraphic aspects of both proximal and distal marine sites. Its stratigraphy strongly resembles the dual-layer K-Pg boundary deposits in the terrestrial Western Interior of North America (although there carbonate phases are not preserved). The occurrence of a dual ejecta layer in these quite different sedimentary environments - separated by several thousands of kilometers - provides additional evidence for an original sedimentary sequence. Therefore, the layered nature of the deposit may document compositional differences between ballistic Chicxulub ejecta forming the majority of the spherule deposit, and material falling out from the vapor (ejecta) plume, which is concentrated in the uppermost part.
Resumo:
Concentrations of dark-colored, highly vesicular, quench-textured mesostasis occur commonly in volcanic rocks drilled in the Lau Basin during Leg 135. These segregations occur as veins, patches, and vesicle linings in rocks with 49%-54% SiO2. The segregations are depleted in Mg, Ca, Al, Sc, Ni, and Cr and enriched in Ti, Ba, Y, and Zr compared to the groundmass with which they occur. Many of the segregations are unusually enriched in copper. The elemental variations show that the segregations are residual liquids produced by 12%-55% crystallization of plagioclase and clinopyroxene, with minor olivine, opaques, or orthopyroxene from the groundmass melt. The liquids forming the segregations are mobilized and emplaced in earlier formed vesicles during the rapid crystallization of the groundmass. The dominant process in this mobilization and emplacement is volatile exsolution from crystallizing melts constrained by a rigid crystalline framework. This exsolution produces significant overpressures within the late-stage melts; the overpressure drives the residual melts through the walls of the older vesicles, along planes of weakness, and into voids. This mechanism is consistent with the occurrence of bimodal vesicle populations in many of the host lavas.
Resumo:
Breast and ovarian cancers are among the leading causes of cancer related deaths in women worldwide. In a subset of these cancers, dysregulation of the human epidermal growth factor receptor 2 (HER2) leads to overexpression of the receptor on the cell surface. Previous studies have found that these HER2+ cancers show high rates of progression to metastatic disease. Metastasis is driven by cytoskeletal rearrangements that produce filamentous actin (F-actin) based structures that penetrate and degrade extracellular matrix to facilitate tumour invasion. Advancements in targeted therapy have made F-actin an attractive target for the development of new cancer therapies. In this thesis, we tested the actin-depolymerizing macrolide toxin, Mycalolide B (MycB), as a potential warhead for a novel antibody drug conjugate (ADC) to target highly metastatic HER2+ breast and ovarian cancers. We found that MycB treatment of HER2+ breast (SKBR3, MDA-MB-453) and ovarian (SKOV3) cancer cells led to loss of viability (IC50 values ≤ 64 nM). Sub-lethal doses of MycB treatment caused potent suppression of leading edge protrusions, migration and invasion potential of HER2+ cancer cells (IC50 ≤ 32 nM). In contrast, other F-actin based processes such as receptor endocytosis were less sensitive to MycB treatment. MycB treatment skewed the size of endocytic vesicles, which may reflect defects in F-actin based vesicle motility or maturation. Given that HER2+ cancers have been effectively targeted by Trastuzumab and Trastuzumab-based ADCs, we tested the effects of a combination of Trastuzumab and MycB on cell migration and invasion. We found that MycB/ Trastuzumab combination treatments inhibited motility of SKOV3 cells to a greater degree than either treatment alone. Altogether, our results provide proof-of-principle that actin toxins such as MycB can be used as a novel class of warheads for ADCs to target and combat highly metastatic cancers.
Resumo:
Coccolithophores are unicellular phytoplankton that are characterized by the presence intricately formed calcite scales (coccoliths) on their surfaces. In most cases coccolith formation is an entirely intracellular process - crystal growth is confined within a Golgi-derived vesicle. A wide range of coccolith morphologies can be found amongst the different coccolithophore groups. This review discusses the cellular factors that regulate coccolith production, from the roles of organic components, endomembrane organization and cytoskeleton to the mechanisms of delivery of substrates to the calcifying compartment. New findings are also providing important information on how the delivery of substrates to the calcification site is co-ordinated with the removal of H(+) that are a bi-product of the calcification reaction. While there appear to be a number of species-specific features of the structural and biochemical components underlying coccolith formation, the fluxes of Ca(2+) and a HCO3(-) required to support coccolith formation appear to involve spatially organized recruitment of conserved transport processes.
Resumo:
Coccolithophores are unicellular phytoplankton that are characterized by the presence intricately formed calcite scales (coccoliths) on their surfaces. In most cases coccolith formation is an entirely intracellular process - crystal growth is confined within a Golgi-derived vesicle. A wide range of coccolith morphologies can be found amongst the different coccolithophore groups. This review discusses the cellular factors that regulate coccolith production, from the roles of organic components, endomembrane organization and cytoskeleton to the mechanisms of delivery of substrates to the calcifying compartment. New findings are also providing important information on how the delivery of substrates to the calcification site is co-ordinated with the removal of H(+) that are a bi-product of the calcification reaction. While there appear to be a number of species-specific features of the structural and biochemical components underlying coccolith formation, the fluxes of Ca(2+) and a HCO3(-) required to support coccolith formation appear to involve spatially organized recruitment of conserved transport processes.
Resumo:
The algae represent major producers of calcium carbonate and silica among the world's biota. Calcification involves the precipitation of CaCO3 from Ca2+ and CO32− ions. Algal calcification by coccolithophores may account for up to half of global oceanic CaCO3 production. Silicification, the transformation of silicic acid into skeletal material, occurs in a few algal groups. The abundant diatoms represent the major silicifiers, playing a key role in marine silica cycling. Fossilised diatomaceous deposits have long been exploited for building and filling materials. Biomineralisation of calcium and silicon require homeostatic ion controls that are well characterised for Ca2+ and H+ in coccolithophores. Calcification occurs in an alkalinised vesicle, while silicification requires an acidic pH. Research on silicification remains focused upon cell wall development. Initiation and development of structures that are mineralised intracellularly requires initiation and regulation by organic components within the vesicles. Low-temperature, low-pressure biogenic formation of silica and calcite has potential for biotechnological application in novel industrial processes.
Resumo:
The algae represent major producers of calcium carbonate and silica among the world's biota. Calcification involves the precipitation of CaCO3 from Ca2+ and CO32− ions. Algal calcification by coccolithophores may account for up to half of global oceanic CaCO3 production. Silicification, the transformation of silicic acid into skeletal material, occurs in a few algal groups. The abundant diatoms represent the major silicifiers, playing a key role in marine silica cycling. Fossilised diatomaceous deposits have long been exploited for building and filling materials. Biomineralisation of calcium and silicon require homeostatic ion controls that are well characterised for Ca2+ and H+ in coccolithophores. Calcification occurs in an alkalinised vesicle, while silicification requires an acidic pH. Research on silicification remains focused upon cell wall development. Initiation and development of structures that are mineralised intracellularly requires initiation and regulation by organic components within the vesicles. Low-temperature, low-pressure biogenic formation of silica and calcite has potential for biotechnological application in novel industrial processes.
Resumo:
MicroRNAs (miRNAs) play a variety of roles in diverse biological processes at the post-transcriptional regulatory level. Although numerous miRNAs have been identified in parasitic helminths, we still know little about their biological functions. As molecular signatures that can be stably detectable in serum and plasma, worm-derived miRNAs have shown promise as markers for the early detection of particular helminth infections. In addition, host miRNAs are dysregulated during the development of pathology associated with helminthiases and show potential as therapeutic intervention targets. This review discusses the possible biological roles of helminth miRNAs, the prediction of their specific targets, their application in diagnosis and anti-pathology therapy interventions, and the potential functions of miRNAs in extracellular vesicle cargo, such as exosomes, in helminth-host interplay.
Resumo:
Vesicle fusion is executed via formation of an Ω-shaped structure (Ω-profile), followed by closure (kiss-and-run) or merging of the Ω-profile into the plasma membrane (full fusion). Although Ω-profile closure limits release but recycles vesicles economically, Ω-profile merging facilitates release but couples to classical endocytosis for recycling. Despite its crucial role in determining exocytosis/endocytosis modes, how Ω-profile merging is mediated is poorly understood in endocrine cells and neurons containing small ∼30-300 nm vesicles. Here, using confocal and super-resolution STED imaging, force measurements, pharmacology and gene knockout, we show that dynamic assembly of filamentous actin, involving ATP hydrolysis, N-WASP and formin, mediates Ω-profile merging by providing sufficient plasma membrane tension to shrink the Ω-profile in neuroendocrine chromaffin cells containing ∼300 nm vesicles. Actin-directed compounds also induce Ω-profile accumulation at lamprey synaptic active zones, suggesting that actin may mediate Ω-profile merging at synapses. These results uncover molecular and biophysical mechanisms underlying Ω-profile merging.
Resumo:
Development of anti-cancer drugs towards clinical application is costly and inefficient. Large screens of drugs, efficacious for non-cancer disease, are currently being used to identify candidates for repurposing based on their anti-cancer properties. Here, we show that low-dose salinomycin, a coccidiostat ionophore previously identified in a breast cancer screen, has anti-leukemic efficacy. AML and MLLr cell lines, primary cells and patient samples were sensitive to submicromolar salinomycin. Most strikingly, colony formation of normal hematopoietic cells was unaffected by salinomycin, demonstrating a lack of hemotoxicity at the effective concentrations. Furthermore, salinomycin treatment of primary cells resulted in loss of leukemia repopulation ability following transplantation, as demonstrated by extended recipient survival compared to controls. Bioinformatic analysis of a 17-gene signature identified and validated in primary MLLr cells, uncovered immunomodulatory pathways, hubs and protein interactions as potential transducers of low dose salinomycin treatment. Additionally, increased protein expression of p62/Sqstm1, encoded for by one of the 17 signature genes, demonstrates a role for salinomycin in aggresome/vesicle formation indicative of an autophagic response.
Together, the data support the efficacy of salinomycin as an anti-leukemic at non-hemotoxic concentrations. Further investigation alone or in combination with other therapies is warranted for future clinical trial.