924 resultados para Crystal atomic structure
Resumo:
Polycrystalline BaWO4 and PbWO4 thin films having a tetragonal scheelite structure were prepared at different temperatures. Soluble precursors such as barium carbonate, lead acetate trihydrate and tungstic acid, as starting materials, were mixed in aqueous solution. The thin films were deposited on silicon, platinum-coated silicon and quartz substrates by means of the spinning technique. The surface morphology and crystal structure of the thin films were investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray diffraction, and specular reflectance infrared Fourier transform spectroscopy, respectively. Nucleation stages and surface morphology evolution of thin films on silicon substrates have been studied by atomic force microscopy. XRD characterization of these films showed that BaWO4 and PbWO4 phase crystallize at 500 degreesC from an inorganic amorphous phase. FTIR spectra revealed the complete decomposition of the organic ligands at 500 degreesC and the appearance of two sharp and intense bands between 1000 and 600 cm(-1) assigned to vibrations of the antisymmetric stretches resulting from the high crystallinity of both thin films. The optical properties were also studied. It was found that BaWO4 and PbWO4 thin films have Eg = 5.78 eV and 4.20 eV, respectively, of a direct transition nature. The excellent microstructural quality and chemical homogeneity results confirmed that soft solution processing provides an inexpensive and environmentally friendly route for the preparation of BaWO4 and PbWO4 thin films. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
To investigate the role of the N-terminal region in the lytic mechanism of the pore-forming toxin sticholysin II (St II), we studied the conformational and functional properties of peptides encompassing the first 30 residues of the protein. Peptides containing residues 1-30 (P1-30) and 11-30 (P11-30) were synthesized and their conformational properties were examined in aqueous solution as a function of peptide concentration, pH, ionic strength, and addition of the secondary structure-inducing solvent trifluoroethanol (TFE). CD spectra showed that increasing concentration, pH, and ionic strength led to aggregation of P1-30; as a consequence, the peptide acquired beta-sheet conformation. In contrast, P11-30 exhibited practically no conformational changes under the same conditions, remaining essentially structureless. Moreover, this peptide did not undergo aggregation. These differences clearly point to the modulating effect of the first 10 hydrophobic residues on the peptides aggregation and conformational properties. In TFE both the first ten hydrophobic peptides acquired alpha-helical conformation, albeit to a different extent, P11-30 displayed lower alpha-helical content. P1-30 presented a larger-fraction of residues in alpha-helical conformation in TFE than that found in St II's crystal structure for that portion of the protein. Since TFE mimics the membrane em,, such increase in helical content could also occur upon toxin binding to membranes and represent a step in the mechanism of pore formation. The peptides conformational properties correlated well with their functional behaviour. Thus, P1-30 exhibited much higher hemolytic activity than P11-30. In addition, P11-30 was able to block the toxin's hemolytic activity. The size of pores formed in red blood cells by P 1-30 was estimated by measuring the permeability PEGs of different molecular mass. The pore radius (0.95 +/- 0.01 nm) was very similar to that of the PEGs of different pore formed by the toxin. The results demonstrate that the synthetic peptide P1-30 is a good model of St 11 conformation and function and emphasize the contribution of the toxin's N-terminal region, and, in particular, the hydrophobic residues 1-10 to pore formation. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Synthesis and X-ray structure of a dinuclear platinum(II) complex with the ligand saccharin(sac) are described. The structure shows two approximately square-planar platinum centers. Each platinum atom is coordinated to one water molecule and three N-bonded saccharinate ligands. The two centers are linked through two potassium atoms. Each potassium atom interacts with six oxygen atoms from hydration and coordinated water molecules and from carbonyl and sulfonate groups of the ligands. It is suggested that, in aqueous solution, the dimeric structure of the complex is dissociated and the monomeric species K[Pt(sac)(3)(H2O)] is formed. The complex was dissolved in water and submitted to in vitro cytotoxic analyses using HeLa cells (human cervix cancer). It was shown that the monomeric complex elicited a potent cytotoxic activity when compared to the vehicle-treated cells. The IC50 value for the monomeric complex is 6.8 mu M, a little bit higher than that obtained for cisplatin. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
A set of 25 quinone compounds with anti-trypanocidal activity was studied by using the density functional theory (DFT) method in order to calculate atomic and molecular properties to be correlated with the biological activity. The chemometric methods principal component analysis (PCA), hierarchical cluster analysis (HCA), stepwise discriminant analysis (SDA), Kth nearest neighbor (KNN) and soft independent modeling of class analogy (SIMCA) were used to obtain possible relationships between the calculated descriptors and the biological activity studied and to predict the anti-trypanocidal activity of new quinone compounds from a prediction set. Four descriptors were responsible for the separation between the active and inactive compounds: T-5 (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors give information on the kind of interaction that occurs between the compounds and the biological receptor. The prediction study was done with a set of three new compounds by using the PCA, HCA, SDA, KNN and SIMCA methods and two of them were predicted as active against the Trypanosoma cruzi. (c) 2005 Elsevier SAS. All rights reserved.
Resumo:
Seselin, C14H12O3, is a coumarin which crystallizes in a monoclinic structure P2(1)/b(C-2h(5)) with four molecules per unit cell. In a Fourier-transform Raman spectroscopic study performed at room temperature, several normal modes were observed. Vibrational wavenumber and wave vector calculations using density functional theory were compared with experiment, which allowed the assignment of a number of normal modes of the crystal. Temperature-dependent Raman spectra were recorded between 10 and 300 K. No anomalies were observed in the phonon spectra, indicating that the monoclinic structure remains stable. Copyright (c) 2007 John Wiley & Sons, Ltd.
Microwave synthesis of calcium bismuth niobate thin films obtained by the polymeric precursor method
Resumo:
The crystal structure, surface morphology and electrical properties of layered perovskite calcium bismuth niobate thin films (CaBi2Nb2O9-CBN) deposited on platinum coated silicon substrates by the polymeric precursor method have been investigated. The films were crystallized in a domestic microwave and in a conventional furnace. X-ray diffraction and atomic force microscopy analysis confirms that the crystallinity and morphology of the films are affected by the different annealing routes. Ferroelectric properties of the films were determined with remanent polarization P-r and a drive voltage V-c of 4.2 mu C/cm(2) and 1.7 V for the film annealed in the conventional furnace and 1.0 mu C/cm(2) and 4.0 V for the film annealed in microwave furnace, respectively. A slight decay after 10(8) polarization cycles was observed for the films annealed in the microwave furnace indicating a reduction of the domain wall mobility after interaction of the microwave energy with the bottom electrode. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
(1) C13H13N3O5, Mr = 291.26, P (1) over bar, a = 7.4629(9), b = 7.9203(9), c = 12.126(2) angstrom, alpha = 86.804(5), beta = 78.471(7), gamma = 69.401(8)degrees, V = 657.3(2)angstrom(3), Z = 2, R-1 = 0.0454; (2) C11H12N2O4, Mr=236.23, Pbca, a=7.2713(9), b=14.234(1), c=20.848(3)angstrom, V= 2157.8(4) angstrom(3), Z=8, R-1=0.0504; (3) C13H13N2O3Cl, Mr = 280.70, P2/n, a = 17.344(2), b = 9.237(1), c = 18.398(2) angstrom; beta = 92.61(2)degrees, V = 2944.4(6) angstrom(3), Z = 8, R-1 = 0.0714. The conformational features of three 4-substituted-3-4-dihydropyrimidin-2(1H)-ones were investigated by computational and single crystal X-ray crystallographic studies. The geometries were optimized using semiempirical (AM1) and first principle calculations (B3LYP/6-31G**) methods, the rotational barriers for important functional groups were studied. In all structures the pyrimidinone rings are in a more or less distorted boat conformation. The phenyl and the furane rings are almost perpendicular to the best least-squares plane through the dihydropyrimidinone ring.
Resumo:
Samarium doped PbTiO3 (PT:Sm) and pure PbTiO3 (PT) powders were obtained by polymeric precursor method. These powders were characterized by X-ray diffraction (XRD) and theoretical calculations using the CRYSTAL98 program. The effect of the samarium atom is taken into account only indirectly. The experimental models were compared with the cubic (ideal) and tetragonal theoretical models. The structure deformations existent in the experimental compounds were analyzed from the tiny structural differences that lead to perturbations in the crystal orbital splittings. This paper proposes an efficient alternative methodology for defining structural distortions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
(1) C6H2N3O7- center dot C5H12NO2+, Mr = 346.26, P2(1)/c, a = 7.2356(6), b = 10.5765(9), c = 19.593(2) angstrom, 3 beta=95.101(6)degrees, V = 1493.5(2) angstrom(3), Z = 4, R-1 = 0.0414; (2) C6H2N3O7- center dot C6H8NO+, Mr = 38.24, P2(1)/n, a = 7.8713(5), b = 6.1979(7), c = 28.697(3) angstrom, beta = 90.028(7)degrees, V = 1400.0(2) angstrom(3), Z = 4, R-1 = 0.0416. The packing units in both compounds consist of hydrogen bonded cation-anion pairs. The (hyper)polarizabilities have been calculated for the crystallographic and optimized molecules, by AM1 and at the DFT/B3LYP(6-31G**) level.
Resumo:
Electrical conductive textured LaNiO3/SrTiO3 (100) thin films were successfully produced by the polymeric precursor method. A comparison between features of these films of LaNiO3 (LNO) when heat treated in a conventional furnace (CF) and in a domestic microwave (MW) oven is presented. The x-ray diffraction data indicated good crystallinity and a structural orientation along the (h00) direction for both films. The surface images obtained by atomic force microscopy revealed similar roughness values, whereas films LNO-MW present slightly smaller average grain size (similar to 80 nm) than those observed for LNO-CF (60-150 nm). These grain size values were in good agreement with those evaluated from the x-ray data. The transport properties have been studied by temperature dependence of the electrical resistivity rho(T) which revealed for both films a metallic behavior in the entire temperature range studied. The behavior of rho(T) was investigated, allowing to a discussion of the transport mechanisms in these films. (C) 2007 American Institute of Physics.
Resumo:
We investigated the alignment induced on a nematic liquid crystal (LC) by a photo-aligned polymer film with azo-dye side groups. The orientation of the LC molecules can be manipulated in a reversible manner by irradiating the film with polarized light. We analyzed the competition between the orientation induced by the main chain, through rubbing of the film and that induced by the photo-aligned polymer. Anchoring strength for the different processing conditions are reported. The changes in film morphology caused by rubbing or photo-alignment could be captured by atomic force microscopy. The reversibility of the photo-induced alignment and the competition between the two anchoring mechanisms may allow recording and erasing of information in a LC display.
Resumo:
Stoichiometric CaWO4 and SrWO4 thin films were synthesized using a chemical solution processing, the so-called polymeric precursor method. In this soft chemical method, soluble precursors such as strontium carbonate, calcium carbonate and tungstic acid, as starting materials, were mixed in an aqueous solution. The thin films were deposited on glass substrates by means of the spinning technique. The surface morphology and crystal structure of the thin films were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Nucleation stages and surface morphology evolution of the thin films on glass substrates were studied by atomic force microscopy. The films nucleate at 300 degreesC, after the coalescence of small nuclei into larger grains yielding a homogeneous dense surface. XRD characterization of these films showed that the CaWO4 and SrWO4 phases crystallize at 400 degreesC from an inorganic amorphous phase. No intermediate crystalline phase was identified. The optical properties were also studied. It was found that CaWO4 and SrWO4 thin films have an optical band gap, E-gap=5.27 and 5.78 eV, respectively, of a direct transition nature. The excellent microstructural quality and chemical homogeneity confirmed that this soft solution processing provides an inexpensive and environmentally friendly route for the preparation of CaWO4 and SrWO4 thin films. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The generator coordinate Hartree-Fock method was used to develop 20s17p, 30s20p14d, and 30s21p16d Gaussian basis sets for the O ((3)p), Mn (S-6), and Y (D-2) atoms, respectively. The Gaussian basis sets were contracted to 20s17p/9s7p, 30s20p14d/11s7p7d, and 30s21p16d/14s7p7d and utilized in calculations of total energy and orbital energies of the (MnO1+)-Mn-5 and (YO1+)-Y-3 fragments to evaluate its quality in molecular studies. Finally, the contracted basis set for O atom was supplemented with one polarization function of d symmetry and used along with the other contracted basis sets (for Mn and Y) to calculate dipole moments, total energy, and total atomic charges in YMnO3 in space group D-6h. The analysis of those properties showed that is reasonable to believe that YMnO3 present behavior of piezoelectric material. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)