956 resultados para Crops and climate
Resumo:
We present a novel kinetic multi-layer model that explicitly resolves mass transport and chemical reaction at the surface and in the bulk of aerosol particles (KM-SUB). The model is based on the PRA framework of gas–particle interactions (P¨oschl et al., 5 2007), and it includes reversible adsorption, surface reactions and surface-bulk exchange as well as bulk diffusion and reaction. Unlike earlier models, KM-SUB does not require simplifying assumptions about steady-state conditions and radial mixing. The temporal evolution and concentration profiles of volatile and non-volatile species at the gas-particle interface and in the particle bulk can be modeled along with surface 10 concentrations and gas uptake coefficients. In this study we explore and exemplify the effects of bulk diffusion on the rate of reactive gas uptake for a simple reference system, the ozonolysis of oleic acid particles, in comparison to experimental data and earlier model studies. We demonstrate how KM-SUB can be used to interpret and analyze experimental data from laboratory stud15 ies, and how the results can be extrapolated to atmospheric conditions. In particular, we show how interfacial transport and bulk transport, i.e., surface accommodation, bulk accommodation and bulk diffusion, influence the kinetics of the chemical reaction. Sensitivity studies suggest that in fine air particulate matter oleic acid and compounds with similar reactivity against ozone (C=C double bonds) can reach chemical lifetimes of 20 multiple hours only if they are embedded in a (semi-)solid matrix with very low diffusion coefficients (10−10 cm2 s−1). Depending on the complexity of the investigated system, unlimited numbers of volatile and non-volatile species and chemical reactions can be flexibly added and treated with KM-SUB. We propose and intend to pursue the application of KM-SUB 25 as a basis for the development of a detailed master mechanism of aerosol chemistry as well as for the derivation of simplified but realistic parameterizations for large-scale atmospheric and climate models.
Resumo:
We compared output from 3 dynamic process-based models (DMs: ECOSSE, MILLENNIA and the Durham Carbon Model) and 9 bioclimatic envelope models (BCEMs; including BBOG ensemble and PEATSTASH) ranging from simple threshold to semi-process-based models. Model simulations were run at 4 British peatland sites using historical climate data and climate projections under a medium (A1B) emissions scenario from the 11-RCM (regional climate model) ensemble underpinning UKCP09. The models showed that blanket peatlands are vulnerable to projected climate change; however, predictions varied between models as well as between sites. All BCEMs predicted a shift from presence to absence of a climate associated with blanket peat, where the sites with the lowest total annual precipitation were closest to the presence/absence threshold. DMs showed a more variable response. ECOSSE predicted a decline in net C sink and shift to net C source by the end of this century. The Durham Carbon Model predicted a smaller decline in the net C sink strength, but no shift to net C source. MILLENNIA predicted a slight overall increase in the net C sink. In contrast to the BCEM projections, the DMs predicted that the sites with coolest temperatures and greatest total annual precipitation showed the largest change in carbon sinks. In this model inter-comparison, the greatest variation in model output in response to climate change projections was not between the BCEMs and DMs but between the DMs themselves, because of different approaches to modelling soil organic matter pools and decomposition amongst other processes. The difference in the sign of the response has major implications for future climate feedbacks, climate policy and peatland management. Enhanced data collection, in particular monitoring peatland response to current change, would significantly improve model development and projections of future change.
Resumo:
The urban heat island (UHI) is a well-known effect of urbanisation and is particularly important in world megacities. Overheating in such cities is expected to be exacerbated in the future as a result of further urban growth and climate change. Demonstrating and quantifying the impact of individual design interventions on the UHI is currently difficult using available software tools. The tools developed in the LUCID (‘The Development of a Local Urban Climate Model and its Application to the Intelligent Design of Cities’) research project will enable the related impacts to be better understood, quantified and addressed. This article summarises the relevant literature and reports on the ongoing work of the project.
Resumo:
This paper assesses the implications of climate policy for exposure to water resources stresses. It compares a Reference scenario which leads to an increase in global mean temperature of 4oC by the end of the 21st century with a Mitigation scenario which stabilises greenhouse gas concentrations at around 450ppm CO2e and leads to a 2oC increase in 2100. Associated changes in river runoff are simulated using a global hydrological model, for four spatial patterns of change in temperature and rainfall. There is a considerable difference in hydrological change between these four patterns, but the percentages of change avoided at the global scale are relatively robust. By the 2050s, the Mitigation scenario typically avoids between 16 and 30% of the change in runoff under the Reference scenario, and by 2100 it avoids between 43 and 65%. Two different measures of exposure to water resources stress are calculated, based on resources per capita and the ratio of withdrawals to resources. Using the first measure, the Mitigation scenario avoids 8-17% of the impact in 2050 and 20-31% in 2100; with the second measure, the avoided impacts are 5-21% and 15-47% respectively. However, at the same time, the Mitigation scenario also reduces the positive impacts of climate change on water scarcity in other areas. The absolute numbers and locations of people affected by climate change and climate policy vary considerably between the four climate model patterns.
Resumo:
Grain legumes, such as peas (Pisum sativum L.), are known to be weak competitors against weeds when grown as the sole crop. In this study, the weed-suppression effect of pea–barley (Hordeum vulgare L.)intercropping compared to the respective sole crops was examined in organic field experiments across Western Europe (i.e., Denmark, the United Kingdom, France, Germany and Italy). Spring pea (P) and barley(B) were sown either as the sole crop, at the recommended plant density (P100 and B100, respectively), or in replacement (P50B50) or additive (P100B50)intercropping designs for three seasons (2003–2005). The weed biomass was three times higher under the pea sole crops than under both the intercrops and barley sole crops at maturity. The inclusion of joint experiments in several countries and various growing conditions showed that intercrops maintain a highly asymmetric competition over weeds, regardless of the particular weed infestation (species and productivity), the crop biomass or the soil nitrogen availability. The intercropping weed suppression was highly resilient, whereas the weed suppression in pea sole crops was lower and more variable. The pea–barley intercrops exhibited high levels of weed suppression, even with a low percentage of barley in the total biomass. Despite a reduced leaf area in the case of a low soil N availability, the barley sole crops and intercrops displayed high weed suppression, probably because of their strong competitive capability to absorb soil N. Higher soil N availabilities entailed increased leaf areas and competitive ability for light, which contributed to the overall competitive ability against weeds for all of the treatments. The contribution of the weeds in the total dry matter and soil N acquisition was higher in the pea sole crop than in the other treatments, in spite of the higher leaf areas in the pea crops.
Resumo:
The Arabian Sea is an important moisture source for Indian monsoon rainfall. The skill of climate models in simulating the monsoon and its variability varies widely, while Arabian Sea cold sea surface temperature (SST) biases are common in coupled models and may therefore influence the monsoon and its sensitivity to climate change. We examine the relationship between monsoon rainfall, moisture fluxes and Arabian Sea SST in observations and climate model simulations. Observational analysis shows strong monsoons depend on moisture fluxes across the Arabian Sea, however detecting consistent signals with contemporaneous summer SST anomalies is complicated in the observed system by air/sea coupling and large-scale induced variability such as the El Niño-Southern Oscillation feeding back onto the monsoon through development of the Somali Jet. Comparison of HadGEM3 coupled and atmosphere-only configurations suggests coupled model cold SST biases significantly reduce monsoon rainfall. Idealised atmosphere-only experiments show that the weakened monsoon can be mainly attributed to systematic Arabian Sea cold SST biases during summer and their impact on the monsoon-moisture relationship. The impact of large cold SST biases on atmospheric moisture content over the Arabian Sea, and also the subsequent reduced latent heat release over India, dominates over any enhancement in the land-sea temperature gradient and results in changes to the mean state. We hypothesize that a cold base state will result in underestimation of the impact of larger projected Arabian Sea SST changes in future climate, suggesting that Arabian Sea biases should be a clear target for model development.
Resumo:
The Arctic has undergone substantial changes over the last few decades in various cryospheric and derivative systems and processes. Of these, the Arctic sea ice regime has seen some of the most rapid change and is one of the most visible markers of Arctic change outside the scientific community. This has drawn considerable attention not only from the natural sciences, but increasingly, from the political and commercial sectors as they begin to grapple with the problems and opportunities that are being presented. The possible impacts of past and projected changes in Arctic sea ice, especially as it relates to climatic response, are of particular interest and have been the subject of increasing research activity. A review of the current knowledge of the role of sea ice in the climate system is therefore timely. We present a review that examines both the current state of understanding, as regards the impacts of sea-ice loss observed to date, and climate model projections, to highlight hypothesised future changes and impacts on storm tracks and the North Atlantic Oscillation. Within the broad climate-system perspective, the topics of storminess and large-scale variability will be specifically considered. We then consider larger-scale impacts on the climatic system by reviewing studies that have focused on the interaction between sea-ice extent and the North Atlantic Oscillation. Finally, an overview of the representation of these topics in the literature in the context of IPCC climate projections is presented. While most agree on the direction of Arctic sea-ice change, the rates amongst the various projections vary greatly. Similarly, the response of storm tracks and climate variability are uncertain, exacerbated possibly by the influence of other factors. A variety of scientific papers on the relationship between sea-ice changes and atmospheric variability have brought to light important aspects of this complex topic. Examples are an overall reduction in the number of Arctic winter storms, a northward shift of mid-latitude winter storms in the Pacific and a delayed negative NAO-like response in autumn/winter to a reduced Arctic sea-ice cover (at least in some months). This review paper discusses this research and the disagreements, bringing about a fresh perspective on this issue.
Sustained monitoring of the Southern Ocean at Drake Passage: past achievements and future priorities
Resumo:
Drake Passage is the narrowest constriction of the Antarctic Circumpolar Current (ACC) in the Southern Ocean, with implications for global ocean circulation and climate. We review the long-term sustained monitoring programmes that have been conducted at Drake Passage, dating back to the early part of the twentieth century. Attention is drawn to numerous breakthroughs that have been made from these programmes, including (a) the first determinations of the complex ACC structure and early quantifications of its transport; (b) realization that the ACC transport is remarkably steady over interannual and longer periods, and a growing understanding of the processes responsible for this; (c) recognition of the role of coupled climate modes in dictating the horizontal transport, and the role of anthropogenic processes in this; (d) understanding of mechanisms driving changes in both the upper and lower limbs of the Southern Ocean overturning circulation, and their impacts. It is argued that monitoring of this passage remains a high priority for oceanographic and climate research, but that strategic improvements could be made concerning how this is conducted. In particular, long-term programmes should concentrate on delivering quantifications of key variables of direct relevance to large-scale environmental issues: in this context, the time-varying overturning circulation is, if anything, even more compelling a target than the ACC flow. Further, there is a need for better international resource-sharing, and improved spatio-temporal coordination of the measurements. If achieved, the improvements in understanding of important climatic issues deriving from Drake Passage monitoring can be sustained into the future.
Resumo:
Many numerical models for weather prediction and climate studies are run at resolutions that are too coarse to resolve convection explicitly, but too fine to justify the local equilibrium assumed by conventional convective parameterizations. The Plant-Craig (PC) stochastic convective parameterization scheme, developed in this paper, solves this problem by removing the assumption that a given grid-scale situation must always produce the same sub-grid-scale convective response. Instead, for each timestep and gridpoint, one of the many possible convective responses consistent with the large-scale situation is randomly selected. The scheme requires as input the large-scale state as opposed to the instantaneous grid-scale state, but must nonetheless be able to account for genuine variations in the largescale situation. Here we investigate the behaviour of the PC scheme in three-dimensional simulations of radiative-convective equilibrium, demonstrating in particular that the necessary space-time averaging required to produce a good representation of the input large-scale state is not in conflict with the requirement to capture large-scale variations. The resulting equilibrium profiles agree well with those obtained from established deterministic schemes, and with corresponding cloud-resolving model simulations. Unlike the conventional schemes the statistics for mass flux and rainfall variability from the PC scheme also agree well with relevant theory and vary appropriately with spatial scale. The scheme is further shown to adapt automatically to changes in grid length and in forcing strength.
Resumo:
The time at which the signal of climate change emerges from the noise of natural climate variability (Time of Emergence, ToE) is a key variable for climate predictions and risk assessments. Here we present a methodology for estimating ToE for individual climate models, and use it to make maps of ToE for surface air temperature (SAT) based on the CMIP3 global climate models. Consistent with previous studies we show that the median ToE occurs several decades sooner in low latitudes, particularly in boreal summer, than in mid-latitudes. We also show that the median ToE in the Arctic occurs sooner in boreal winter than in boreal summer. A key new aspect of our study is that we quantify the uncertainty in ToE that arises not only from inter-model differences in the magnitude of the climate change signal, but also from large differences in the simulation of natural climate variability. The uncertainty in ToE is at least 30 years in the regions examined, and as much as 60 years in some regions. Alternative emissions scenarios lead to changes in both the median ToE (by a decade or more) and its uncertainty. The SRES B1 scenario is associated with a very large uncertainty in ToE in some regions. Our findings have important implications for climate modelling and climate policy which we discuss.
Resumo:
The development of biofuels has been one of the most visible and controversial manifestations of the use of biomass for energy. Biofuels policies in the EU, US and Brazil have been particularly important for the development of the industry in these three important markets. All three have used a variety of measures, including consumption or use mandates, tax incentives and import protection to promote the production and use of biofuels. Despite this, it is uncertain whether the EU will achieve its objective of a 10 per cent share for renewables in transport fuels by 2020. The US is also running into difficulties in meeting consumption mandates for biofuels. Questions are being raised about the continuation of tax credits and import protection. Brazil has liberalised its domestic ethanol market and adopted a more market-oriented approach to biofuels policy, but the management of domestic petroleum prices and the inter-relationship between the sugar market and ethanol production are important factors affecting domestic consumption and exports. In both the EU and the US an ongoing debate about the benefits of reliance on biofuels derived from food crops and concern about the efficacy of current biofuels policies may put their future in doubt.
Resumo:
Our group considered the desirability of including representations of uncertainty in the development of parameterizations. (By ‘uncertainty’ here we mean the deviation of sub-grid scale fluxes or tendencies in any given model grid box from truth.) We unanimously agreed that the ECWMF should attempt to provide a more physical basis for uncertainty estimates than the very effective but ad hoc methods being used at present. Our discussions identified several issues that will arise.
Resumo:
Tropical Cyclone (TC) is normally not studied at the individual level with Global Climate Models (GCMs), because the coarse grid spacing is often deemed insufficient for a realistic representation of the basic underlying processes. GCMs are indeed routinely deployed at low resolution, in order to enable sufficiently long integrations, which means that only large-scale TC proxies are diagnosed. A new class of GCMs is emerging, however, which is capable of simulating TC-type vortexes by retaining a horizontal resolution similar to that of operational NWP GCMs; their integration on the latest supercomputers enables the completion of long-term integrations. The UK-Japan Climate Collaboration and the UK-HiGEM projects have developed climate GCMs which can be run routinely for decades (with grid spacing of 60 km) or centuries (with grid spacing of 90 km); when coupled to the ocean GCM, a mesh of 1/3 degrees provides eddy-permitting resolution. The 90 km resolution model has been developed entirely by the UK-HiGEM consortium (together with its 1/3 degree ocean component); the 60 km atmospheric GCM has been developed by UJCC, in collaboration with the Met Office Hadley Centre.