995 resultados para Coupled modes
Resumo:
The dielectric response of an electron system composed of an array of parallel quantum wires with weak coupling and strong coupling are studied, and the dispersions of the collective excitations and the single particle excitations (SPE) as functions of wave-vectors are given. It is found that for the nearly isolated quantum wires with several subbands occupation, there are a series of intra-subband collective excitations between corresponding intra-subband SPE spectra. There also exist inter-subband collective excitations when q(x) not equal 0 (q(x) is the wave-vector component in the modulation direction), whose energies are close by the corresponding inter-subband SPE spectra. The energy of the intra-subband mode decreases and that of inter-subband mode increases with q(x) increasing. The collective excitation dispersions show obvious anisotropy in the 1D quantum limit. The calculated results agree with the experiment well. The coupling between quantum wires affects markedly both the collective and single-particle excitations spectra. The system changes to a near-two-dimensional electron system gradually with increasing coupling.
Structures of an asymmetrically coupled double-well superlattice by double-crystal X-ray diffraction
Resumo:
An asymmetrically coupled (GaAs/AlAs/GaAs/AlAs)/GaAs (001) double-well supperlattice is studied by HRDCD (high resolution double-crystal X-ray diffractometry). The intensity of satellite peaks is modulated by wave packet of different sublayers. In the course of simulation, the satellite peaks in the vicinity of the node points of wave packet are very informative for precise determination of sublayer thickness and for improving accuracy.
Resumo:
In the framework of effective mass envelope function theory, absorption coefficients are calculated for intraband (intersubband in the conduction band) optical transition in InAs/GaAs coupled quantum dots. In our calculation the microscpic distributon of the strain is taken into account. The absorption in coupled quantum dots is quite different from that of superlattices. In superlattices, the absorption does not exist when the electric vector of light is parallel to the superlattice plane (perpendicular incident). This introduces somewhat of a difficulty in fabricating the infrared detector. In quantum dots, the absorption exists when light incident along any direction, which may be good for fabricating infrared detectors.
Resumo:
We explore the possibility of a quantum directional coupler based on Pi-shaped coupled electron waveguides with smooth boundaries. By calculating the transmission spectra, we propose an optimized coupler structure with a high directivity and fine uniformity. The coupler specifications, directivity, uniformity, and coupling coefficient are evaluated.
Resumo:
In the framework of effective-mass envelope-function theory, the optical transitions of InAs/GaAs strained coupled quantum dots grown on GaAs (100) oriented substrates are studied. At the Gamma point, the electron and hole energy levels, the distribution of electron and hole wave functions along the growth and parallel directions, the optical transition-matrix elements, the exciton states, and absorption spectra are calculated. In calculations, the effects due to the different effective masses of electrons and holes in different materials are included. Our theoretical results are in good agreement with the available experimental data.
Resumo:
An effective coupling efficient is introduced for gain-coupled distributed feedback lasers with absorptive grating. When radiation and other partial wave coupling effects are considered, the effective coupling coefficient will change significantly. In some cases, it will become real, although both loss and index coupling are presented.
Resumo:
Recent infrared spectroscpic observations of local vibrational mode absorptions have revealed a number of photosensitive centers in semi-insulating GaAs. They include (OVAs) center which has three modes at 730 cm(-1) (A), 715 cm(-1) (B), and 714 cm(-1) (C), respectively, a suggested NH center related to a line at 983 cm(-1) (X(1)), and centers related to hydrogen, such as (H-O) or (H-N) bonds, corresponding to a group of peaks in the region of 2900-3500 cm(-1). The photosensitivity of various local vibration centers was observed to have similar time dependence under near-infrared illumination and was suggested to be due to their charge-state interconversion. Mainly described in this work is the effect of the 1.25-eV illumination. It is confirmed that this photoinduced kinetic process results from both electron capture and hole capture, which are closely related to the photoionization behavior and metastability of the EL2 center.
Resumo:
The thermal population in photocarrier systems coupled by hole mixing tunneling is studied by an analysis of the high energy tails in cw photoluminescence spectra of asymmetric coupled double wells. Photocarriers in wide well are heated due to hole transfer from the narrow well through resonant tunneling as well as by photon heating. The influences of the excitation intensity and lattice temperature on the tunneling transfer and thermal population are discussed.
Resumo:
A complex-coupled DFB laser with sampled grating has been designed and fabricated. The method uses the + 1 st order reflection of the sampled grating for laser single-mode operation. The typical threshold current of the sampled grating based DFB laser is 25 mA, and the optical output is about 10 mW at the injected current of 100 mA. The lasing wavelength of the device is 1.5385μm, which is the +1 st order wavelength of the sampled grating.
Resumo:
The effects of the multimode diluted waveguide on quantum efficiency and saturation behavior of the evanescently coupled uni-traveling carrier(UTC)photodiode structures are reported. Two kinds of evanescently coupled uni-traveling carrier photodiodes(EC-UTC-PD)were designed and characterized: one is a conventional EC-UTC-PD structure with a multimode diluted waveguide integrated with a UTC-PD; and the other is a compact EC-UTC-PD structure which fused the multimode diluted waveguide and the UTC-PD structure together. The effect of the absorption behavior of the photodiodes on the efficiency and saturation characteristics of the EC-UTC-PDs is analyzed using 3-D beam propagation method, and the results indicate that both the responsivity and saturation power of the compact EC-UTC-PD structures can be further improved by incorporating an optimized compact multimode diluted waveguide.
Resumo:
A fiber coupled module is fabricated with integrating the emitting light from four laser diode bars into multimode fiber bundle. The continuous wave (CW) output power of the module is about 130 W with a coupling efficiency of around 80%. The output power is very stable after the temperature cycling and vibration test. No apparent power decrease has been observed as the device working continuously for 500 h.
Resumo:
Equilateral triangle semiconductor microcavities with tensile-strained InGaAsP multi-quantum-well asthe active region are fabricated by the inductively coupled plasma (ICP) etching technique. The modecharacteristics of the fabricated microcavities are investigated by photoluminescence, and enhanced peaksof the photoluminescence spectra corresponding to the fundamental transverse modes are observed formicrocavities with side lengths of 5 and 10 μm. The mode wavelength spacings measured experimentallycoincide very well with those obtained by the theoretical formulae.