946 resultados para Corrugated waveguide


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we conduct a theoretical analysis of the design, fabrication, and performance measurement of high-power and high-brightness strained quantum-well lasers emitting at 0.98 mum, The material system of interest consists of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. Some key parameters of the laser structure are theoretically analyzed, and their effects on the laser performance are discussed. The laser material is grown by metal-organic chemical vapor deposition and demonstrates high quality with low-threshold current density, high internal quantum efficiency, and extremely low internal loss. High-performance broad-area multimode and ridge-waveguide single-mode laser devices are fabricated. For 100-mum-wide stripe lasers having a cavity length of 800 mum, a high slope efficiency of 1.08 W-A, a low vertical beam divergence of 34 degrees, a high output power of over 4.45 W, and a very high characteristic temperature coefficient of 250 K were achieved. Lifetime tests performed at 1.2-1.3 W (12-13 mW/mum) demonstrates reliable performance. For 4-mum-wide ridge waveguide single-mode laser devices, a maximum output power of 394 mW and fundamental mode power up to 200 mW with slope efficiency of 0.91 mW/mum are obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polyetherketone (PEK-c) guest-host polymer planar waveguides doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The waveguide films were poled by corona-onset poling at elevated temperature (COPET), and the corona poling setup includes a grid voltage making the surface-charge distribution uniform. By using the prism-in coupling method, the dark-line spectrum given by the reflected intensity versus the angle of incidence have been obtained, and the optical transmission losses of mth modes have been measured for the poled polymer waveguides at lambda = 632.8 nm. The measurement result showed that the optical loss of the fundamental mode is less than 0.7 dB cm(-1) for the TE polarization. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we reported on the fabrication of 980 nm InGaAs/InGaAsP strained quantum-well (QW) lasers with broad waveguide. The laser structure was grown by low-pressure metalorganic chemical vapor deposition on a n(+)- GaAs substrate. For 3 mu m stripe ridge waveguide lasers, the threshold current is 30 mA and the maximum output power and the output power operating in fundamental mode are 350 mW and 200 mW, respectively. The output power from the single mode fiber is up to 100 mW, the coupling efficiency is 50%. We also fabricated 100 mu m broad stripe coated lasers with cavity length of 800 mu m, a threshold current density of 170 A/cm(2), a high slope efficiency of 1.03 W/A and a far-field pattern of 40 x 6 degrees are obtained. The maximum output power of 3.5 W is also obtained for 100 mu m wide coated lasers. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Silicon-based silica waveguide (SiO2/Si) devices have huge applications in optical telecommunication. SiO2 up to 25-mu m thick is necessary for some passive SiO2/Si waveguide devices. Oxidizing porous silicon to obtain thick SiO2 as cladding layer is presented. The experimental results of porous layer and oxidized porous layer formation were given. The relationship between cracking of SiO2 and temperature varying rate was given experimentally. Such conclusions are drawn: oxidation rate of porous silicon is several orders faster than that of bulk silicon; appropriate temperature variation rate during oxidation can prevent SiO2 on silicon substrates from cracking, and 25 mu m thick silicon dioxide layer has been obtained. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A InGaAsP/InP self-aligned, native oxidized buried heterostructure (BH) distributed feedback (DFB) laser is proposed. It is as easy to process as the ridge waveguide DFB laser and has superior performance. The current aperture can be easily controlled without selective regrowth. The laser exhibits a low threshold of 5.0 mA with 36 dB side mode suppression ratio at the emission wavelength of 1.562 mu m. It emits in a single lobe with full width at half maximum angles of 33.6 degrees and 42.6 degrees for the lateral and vertical fields, respectively. Its beam is more circular than that of the as-grown BH laser because the lower refractive index of oxide compared to the as-grown layer and results in a larger lateral optical confinement. Its characteristic temperature (T-0) is 50 K at room temperature but increases in value at the higher temperature range. (C) 2000 American Institute of Physics. [S0003-6951(00)00812-3].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

650 nm-range AlGaInP multi-quantum well (MQW) laser diodes grown by low pressure metal organic chemical vapor deposition (LP-MOCVD) have been studied and the results are presented in this paper. Threshold current density of broad area contact laser diodes can be as low as 350 A/cm(2). Laser diodes with buried-ridge strip waveguide structures were made, threshold currents and differential efficiencies are (22-40) mA and (0.2-0.7) mW/mA, respectively. Typical output power for the laser diodes is 5 mW, maximum output power of 15 mW has been obtained. Their operation temperature can be up to 90 degrees C under power of 5 mW. After operating under 90 degrees C and 5 mW for 72 hrs, the average increments for the threshold currents of the lasers at 25 degrees C and the operation currents at 5 mW (at 25 degrees C) are (2-3) mA and (3-5) mA, respectively. Reliability tests showed that no obvious degradation was observed after 1400 hours of CW operation under 50 degrees C and 2.5 mW.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The semiconductor photonics and optoelectronics which have a great significance in the development of advanced high technology of information systems will be discussed in this paper. The emphasis will be put on the recent research carried out in our laboratory in enhanced luminescence from low dimensional materials such as SiGe/Si and Er-doped Si-rich SiO2/Si and Er-doped SixNy/Si. A ring shape waveguide structure, used to promote the effective absorption coefficient in PIN photodetector for 1.3 mu m wavelength and a resonant cavity enhanced structure, used to improve the quantum efficiency and response in heterostructure photo-transistor (HPT), are also proposed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors report on the fabrication of 980 nm InGaAs strained quantum well lasers with hybrid materials of InGaAsP as waveguide and AlGaAs as cladding grown by metal organic chemical vapour deposition. The InGaAs/InGaAsP/AlGaAs diode lasers (100 x 800 mu m) with broadened waveguide structure exhibit a threshold current of 180 mA, a slope efficiency of 1.0 W/A, and a high characteristic temperature coefficient (T-0) of 230 K.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The magneto-transport properties of a narrow quantum waveguide with lateral multibarrier modulation are investigated theoretically. It is found that the magnetoconductance as a function of Fermi energy or magnetic field exhibits square-wave-like oscillations. In the presence of magnetic field, the edge states are formed near each barrier and the boundaries. Therefore, the number of edge states increases with the number of lateral barriers, leading to the increase of the propagating modes. On the other hand, owing to the tunneling effect a pair of edge states around the barrier region with opposite moving directions may be coupled and formed a circulating localized state, leading to the quenching of the related propagating states. The resulting dispersion relation exhibits oscillation structures superimposed on the bulk Landau levels. These novel conductance characteristics may provide potential applications to the fabrication of new quantum devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transverse mode control in oxide confined vertical-cavity surface-emitting lasers is discussed by modeling the dielectric aperture as a uniform waveguide and an extra reflectivity at the oxide layer. The phase of the extra reflectivity and the refractive index step can be adjusted to change the mode threshold gain. We calculate the lateral refractive index step from the mode wavelength difference between aperture and perimeter modes, and compare it with that obtained from the weighted average index. The mode reflectivity in terms of the lateral optical confinement factor at the oxide layer is considered in calculating the threshold gain for transverse modes. The numerical results show that higher transverse modes can be suppressed by adjusting the position of a thin AlAs-oxide layer inside a three-quarter-wave layer in the distributed Bragg reflector. (C) 1998 American Institute of Physics. [S0021-8979(98)04007-9].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A specially designed quantum well laser for achieving extremely low vertical beam divergence was reported and theoretically investigated. The laser structure was characterized by two low index layers inserted between the waveguide layers and the cladding layers. The additional layers were intended to achieve wide optical spread in the cladding layers and strong confinement in the active region. This enabled significant reduction of beam divergence with no sacrifice in threshold current density. The numerical results showed that lasers with extremely low vertical beam divergence from 20 degrees down to 11 degrees and threshold current density of less than 131 A/cm(2) can be easily achieved by optimization of the structure parameters. Influences of individual key structure parameters on beam divergence and threshold current density are analyzed. Attention is also paid to the minimum cladding layer thicknesses needed to maintain low threshold current densities and low internal loss. The near and far field patterns are given and discussed. (C) 1998 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have shown that high energy ion implantation enhanced intermixing (HE-IIEI) technology for quantum well (QW) structures is a powerful technique which can be used to blue shift the band gap energy of a QW structure and therefore decrease its band gap absorption. Room temperature (RT) photoluminescence (PL) and guided-wave transmission measurements have been employed to investigate the amount of blue shift of the band gap energy of an intermixed QW structure and the reduction of band gap absorption, Record large blue shifts in PL peaks of 132 nm for a 4-QW InGaAs/InGaAsP/InP structure have been demonstrated in the intermixed regions of the QW wafers, on whose non-intermixed regions, a shift as small as 5 nm is observed. This feature makes this technology very attractive for selective intermixing in selected areas of an MQW structure. The dramatical reduction in band gap absorption for the InP based MQW structure has been investigated experimentally. It is found that the intensity attenuation for the blue shifted structure is decreased by 242.8 dB/cm for the TE mode and 119 dB/cm for the TM mode with respect to the control samples. Electro-absorption characteristics have also been clearly observed in the intermixed structure. Current-Voltage characteristics were employed to investigate the degradation of the p-n junction in the intermixed region. We have achieved a successful fabrication and operation of Y-junction optical switches (JOS) based on MQW semiconductor optical amplifiers using HE-IIEI technology to fabricate the low loss passive waveguide. (C) 1997 Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A numerical analysis of an electron waveguide coupler based on two quantum wires coupled by a magnetically defined barrier is presented with the use of the scattering-matrix method. For different geometry parameters and magnetic fields, tunneling transmission spectrum is obtained as a function of the electron energy. Different from that of conventional electron waveguide couplers, the transmission spectrum of the magnetically coupled quantum wires does not have the symmetry with regard to those geometrically symmetrical ports, It was found that the magnetic field in the coupling region drastically enhances the coupling between the two quantum wires for one specific input port while it weakens the coupling for the other input port. The results can be well understood by the formation of the edge states in the magnetically defined barrier region. Thus, whether these edge states couple or decouple to the electronic propagation modes in the two quantum wires, strongly depend on the relative moving directions of electrons in the propagating mode in the input port and the edge states in the magnetic region. This leads to a big difference in transmission coefficients between two quantum wires when injecting electrons via different input ports. Two important coupler specifications, the directivity and uniformity, are calculated which show that the system we considered behaves as a good quantum directional coupler. (C) 1997 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polarization-independent laterally-coupled micro-ring resonator has been designed and demonstrated. The origin of the polarization-sensitivity of the photonic wire waveguide (PWW) was analyzed. A polarization-insensitive PWW structure was designed and a polarization-insensitive MRR based on this PWW structure was designed by finite difference time-domain method and was fabricated on an 8-inch silicon-on-insulator wafer. The offset between the resonant wavelengths of the quasi-TE mode and the quasi-TM mode is smaller than 0.15 nm. The FSR is about 17 nm, extinction ratio about 10 dB and Q about 620.