960 resultados para Computer engineering|Electrical engineering
Resumo:
The advent of Wireless Sensor Network (WSN) technologies is paving the way for a panoply of new ubiquitous computing applications, some of them with critical requirements. In the ART-WiSe framework, we are designing a two-tiered communication architecture for supporting real-time and reliable communications in WSNs. Within this context, we have been developing a test-bed application, for testing, validating and demonstrating our theoretical findings - a search&rescue/pursuit-evasion application. Basically, a WSN deployment is used to detect, localize and track a target robot and a station controls a rescuer/pursuer robot until it gets close enough to the target robot. This paper describes how this application was engineered, particularly focusing on the implementation of the localization mechanism.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Structural health monitoring has long been identified as a prominent application of Wireless Sensor Networks (WSNs), as traditional wired-based solutions present some inherent limitations such as installation/maintenance cost, scalability and visual impact. Nevertheless, there is a lack of ready-to-use and off-the-shelf WSN technologies that are able to fulfill some most demanding requirements of these applications, which can span from critical physical infrastructures (e.g. bridges, tunnels, mines, energy grid) to historical buildings or even industrial machinery and vehicles. Low-power and low-cost yet extremely sensitive and accurate accelerometer and signal acquisition hardware and stringent time synchronization of all sensors data are just examples of the requirements imposed by most of these applications. This paper presents a prototype system for health monitoring of civil engineering structures that has been jointly conceived by a team of civil, and electrical and computer engineers. It merges the benefits of standard and off-the-shelf (COTS) hardware and communication technologies with a minimum set of custom-designed signal acquisition hardware that is mandatory to fulfill all application requirements.
Resumo:
The fractional order calculus (FOC) is as old as the integer one although up to recently its application was exclusively in mathematics. Many real systems are better described with FOC differential equations as it is a well-suited tool to analyze problems of fractal dimension, with long-term “memory” and chaotic behavior. Those characteristics have attracted the engineers' interest in the latter years, and now it is a tool used in almost every area of science. This paper introduces the fundamentals of the FOC and some applications in systems' identification, control, mechatronics, and robotics, where it is a promissory research field.
Resumo:
Dissertação apresentada para a obtenção do Grau de Doutor em Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
The Maxwell equations, expressing the fundamental laws of electricity and magnetism, only involve the integer-order calculus. However, several effects present in electromagnetism, motivated recently an analysis under the fractional calculus (FC) perspective. In fact, this mathematical concept allows a deeper insight into many phenomena that classical models overlook. On the other hand, genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. In this work we use FC and GA to implement the electrical potential of fractional order. The performance of the GA scheme and the convergence of the resulting approximations are analyzed.
Resumo:
Fractional calculus (FC) is currently being applied in many areas of science and technology. In fact, this mathematical concept helps the researches to have a deeper insight about several phenomena that integer order models overlook. Genetic algorithms (GA) are an important tool to solve optimization problems that occur in engineering. This methodology applies the concepts that describe biological evolution to obtain optimal solution in many different applications. In this line of thought, in this work we use the FC and the GA concepts to implement the electrical fractional order potential. The performance of the GA scheme, and the convergence of the resulting approximation, are analyzed. The results are analyzed for different number of charges and several fractional orders.
Resumo:
THE ninth edition of the International Conference on Remote Engineering and Virtual Instrumentation (REV) [1] was held at the Faculty of Engineering of the University of Deusto, Bilbao (Spain), from the 4th to the 6th of July, 2012. A world-class research community in the subject of remote and virtual laboratories joined the event.
Resumo:
According to recent studies, informal learning accounts for more than 75% of our continuous learning through life. However, the awareness of this learning, its benefits and its potential is still not very clear. In engineering contexts, informal learning could play an invaluable role helping students or employees to engage with peers and also with more experience colleagues, exchanging ideas and discussing problems. This work presents an initial set of results of the piloting phase of a project (TRAILER) where an innovative service based on Information & Communication Technologies was developed in order to aid the collection and visibility of informal learning. This set of results concerns engineering contexts (academic and business), from the learners' perspective. The major idea that emerged from these piloting trials was that it represented a good way of collecting, recording and sharing informal learning that otherwise could easily be forgotten. Several benefits were reported between the two communities such as being helpful in managing competences and human resources within an institution.
Resumo:
Fractional Calculus FC goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades, due to the progress in the area of chaos that revealed subtle relationships with the FC concepts. In the field of dynamical systems theory some work has been carried out but the proposed models and algorithms are still in a preliminary stage of establishment. Having these ideas in mind, the paper discusses FC in the study of system dynamics and control. In this perspective, this paper investigates the use of FC in the fields of controller tuning, legged robots, redundant robots, heat diffusion, and digital circuit synthesis.
Structuring and moodleing a course: case studies at the polytechnic of Porto - School of engineering
Resumo:
This work presents a comparative study covering four different courses lectured at the Polytechnic of Porto - School of Engineering, in respect to the usage of a particular Learning Management System, i.e. Moodle, and its impact on students' results. Even though positive correlation factors exist, e.g. between the number of Moodle accesses versus the final exam grade obtained by each student, the explanation behind it may not be straightforward. Mapping this particular factor to course numbers reveals that the quality of the resources might be preponderant and not only their quantity. This paper also addresses teachers who used this platform as a complement to their courses (b-learning) and identifies some particular issues they should be aware in order to potentiate students' engagement and learning.
Resumo:
This work presents a comparative study covering four different courses lectured at the Polytechnic of Porto - School of Engineering, regarding the usage of a particular Learning Management System, i.e. Moodle, and its impact on students' results. This study addresses teachers who used this platform as a complement to their courses (b-learning) and identifies some particular issues in order to potentiate students' engagement and learning. Even though positive correlation factors exist, e.g. between the number of Moodle accesses versus the final exam grade obtained by each student, the explanation behind it may not be straightforward. Mapping this particular factor to course numbers reveals that the quality of the resources might be preponderant and not only their quantity. These results point to the fact that some dynamic resources might enlarge students' engagement.
Resumo:
The internal impedance of a wire is the function of the frequency. In a conductor, where the conductivity is sufficiently high, the displacement current density can be neglected. In this case, the conduction current density is given by the product of the electric field and the conductance. One of the aspects of the high-frequency effects is the skin effect (SE). The fundamental problem with SE is it attenuates the higher frequency components of a signal.
Resumo:
This paper reports on the creation of an interface for 3D virtual environments, computer-aided design applications or computer games. Standard computer interfaces are bound to 2D surfaces, e.g., computer mouses, keyboards, touch pads or touch screens. The Smart Object is intended to provide the user with a 3D interface by using sensors that register movement (inertial measurement unit), touch (touch screen) and voice (microphone). The design and development process as well as the tests and results are presented in this paper. The Smart Object was developed by a team of four third-year engineering students from diverse scientific backgrounds and nationalities during one semester.
Resumo:
Porto Polytechnical Engineering School (ISEP), a Global Reporting Initiative training partner in Portugal, has just presented its Sustainable Development Action Plan (PASUS), which main objective is the formation of a new kind of engineers, with a Sustainable Development (SD) philosophy in the core of their academic curricula courses.