982 resultados para Cold stress


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The singular nature of the dynamic stress fields around an interface crack located between two dissimilar isotropic linearly viscoelastic bodies is studied. A harmonic load is imposed on the surfaces of the interface crack. The dynamic stress fields around the crack are obtained by solving a set of simultaneous singular integral equations in terms of the normal and tangent crack dislocation densities. The singularity of the dynamic stress fields near the crack tips is embodied in the fundamental solutions of the singular integral equations. The investigation of the fundamental solutions indicates that the singularity and oscillation indices of the stress fields are both dependent upon the material constants and the frequency of the harmonic load. This observation is different from the well-known -1/2 oscillating singularity for elastic bi-materials. The explanation for the differences between viscoelastic and elastic bi-materials can be given by the additional viscosity mismatch in the case of viscoelastic bi-materials. As an example, the standard linear solid model of a viscoelastic material is used. The effects of the frequency and the material constants (short-term modulus, long-term modulus and relaxation time) on the singularity and the oscillation indices are studied numerically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coupling of mesoscopic strength distribution and stress fluctuation on damage evolution and rupture are examined. The numerical simulations show that there is only weak stress fluctuation at the initial damage stage when the mean field approximation is in effect. As the damage fraction becomes larger than the threshold value, the fluctuation is amplified significantly, and damage localization appears. The coupling between stress fluctuation, disordered heterogeneity and the damage localization may play an essential role in catastrophic rupture. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the sub-region generalized variational principle, a sub-region mixed version of the newly-developed semi-analytical 'finite element method of lines' (FEMOL) is proposed in this paper for accurate and efficient computation of stress intensity factors (SIFs) of two-dimensional notches/cracks. The circular regions surrounding notch/crack tips are taken as the complementary energy region in which a number of leading terms of singular solutions for stresses are used, with the sought SIFs being among the unknown coefficients. The rest of the arbitrary domain is taken as the potential energy region in which FEMOL is applied to obtain approximate displacements. A mixed system of ordinary differential equations (ODEs) and algebraic equations is derived via the sub-region generalized variational principle. A singularity removal technique that eliminates the stress parameters from the mixed equation system eventually yields a standard FEMOL ODE system, the solution of which is no longer singular and is simply and efficiently obtained using a standard general-purpose ODE solver. A number of numerical examples, including bi-material notches/cracks in anti-plane and plane elasticity, are given to show the generally excellent performance of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For an anti-plane problem, the differential operator is self-adjoint and the corresponding eigenfunctions belong to the Hilbert space. The orthogonal property between eigenfunctions (or between the derivatives of eigenfunctions) of anti-plane problem is exploited. We developed for the first time two sets of radius-independent orthogonal integrals for extraction of stress intensity factors (SIFs), so any order SIF can be extracted based on a certain known solution of displacement (an analytic result or a numerical result). Many numerical examples based on the finite element method of lines (FEMOL) show that the present method is very powerful and efficient.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The close form solutions of deflections and curvatures for a film-substrate composite structure with the presence of gradient stress are derived. With the definition of more precise kinematic assumption, the effect of axial loading due to residual gradient stress is incorporated in the governing equation. The curvature of film-substrate with the presence of gradient stress is shown to be nonuniform when the axial loading is nonzero. When the axial loading is zero, the curvature expressions of some structures derived in this paper recover the previous ones which assume the uniform curvature. Because residual gradient stress results in both moment and axial loading inside the film-substrate composite structure, measuring both the deflection and curvature is proposed as a safe way to uniquely determine the residual stress state inside a film-substrate composite structure with the presence of gradient stress.

Relevância:

20.00% 20.00%

Publicador: