945 resultados para California. State Board of Equalization
Resumo:
Solid-state M-2-Cl-BP, where M stands for Mn, Fe, Co, Ni, Cu, Zn and Pb and 2-Cl-BP is 2-chlorobenzylidenepyruvate, have been synthesized. Thermogravimetry and derivative thermogravimetry (TG/DTG), simultaneous thermogravimetry and differential thermal analysis (TG-DTA), X-ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.
Resumo:
Solid-state Ln(Bz)(3)center dot H(2)O compounds where Ln stands for trivalent yttrium or lanthanides and Bz is benzoate have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), X-ray powder diffractometry, infrared spectroscopy and chemical analysis were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.
Resumo:
A simple method for calculating the asymptotic D-state observables for light nuclei is suggested. The method exploits the dominant clusters of the light nuclei. The method is applied to calculate the He-4 asymptotic D to S normalization ratio rho(alpha) and the closely related D-state parameter D2alpha. The study predicts a correlation between D2alpha and B(alpha), and between rho(alpha) and B(alpha), where B(alpha) is the binding energy of He-4. The present study yields rho(alpha) congruent-to -0.14 and D2alpha congruent-to -0.12 fm2 consistent with the correct experimental eta(d) and the binding energies of the deuteron, triton, and the alpha particle, where eta(d) is the deuteron D-state to S-state normalization ratio.
Resumo:
Solid compounds of general formula ML(2) . nH(2)O [where M is Mg, Ca, Sr or Ba; L=4 methoxybenzylidenepyruvate (4-MeO-BP); n = 4, 1 or 0] have been synthetized. Thermogravimetry (TG), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), x-ray diffraction powder patterns and elemental analysis have been used to characterize the compounds. The thermal stability of these compounds as well as that of the decomposition products were studied using Pt or Al2O3 crucibles in an air or a CO2 atmosphere.
Resumo:
The deactivation of the two lowest excited states of Ho3+ was investigated in Ho3+ singly doped and Ho3+, Pr3+-codoped fluoride (ZBLAN) glasses. We establish that 0.1-0.3 mol % Pr3+ can efficiently deactivate the first excited (I-5(7)) state of Ho3+ while causing a small reduction of similar to 40% of the initial population of the second excited (I-5(6)) state. The net effect introduced by the Pr3+ ion deactivation of the Ho3+ ion is the fast recovery of the ground state of Ho3+. The Burshstein model parameters relevant to the Ho3+-> Pr3+ energy transfer processes were determined using a least squares fit to the measured luminescence decay. The energy transfer upconversion and cross relaxation parameters for 1948, 1151, and 532 nm excitations of singly Ho3+-doped ZBLAN were determined. Using the energy transfer rate parameters we determine from the measured luminescence, a rate equation model for 650 nm excitation of Ho3+-doped and Ho3+, Pr3+-doped ZBLAN glasses was developed. The rate equations were solved numerically and the population inversion between the I-5(6) and the I-5(7) excited states of Ho3+ was calculated to examine the beneficial effects on the gain associated with Pr3+ codoping. (c) 2007 American Institute of Physics.
Resumo:
Solid-state M-EDTA chelates, where M represents the divalent ions Mg(II), Ca(II), Sr(II) or Ba(II) and EDTA is ethylenediaminetetraacetate anion, were synthesized. Thermogravimetry, derivative thermogravimetry (TG, DTG), differential scanning calorimetry (DSC) and X-ray diffraction powder patterns have been used to characterize and to study the thermal behaviour of these chelates. The results provided information concerning the stoichiometry, crystallinity, thermal stability and thermal decomposition.
Resumo:
It is shown that for singular potentials of the form lambda/r(alpha),the asymptotic form of the wave function both at r --> infinity and r --> 0 plays an important role. Using a wave function having the correct asymptotic behavior for the potential lambda/r(4), it is, shown that it gives the exact ground-state energy for this potential when lambda --> 0, as given earlier by Harrell [Ann. Phys. (NY) 105, 379 (1977)]. For other values of the coupling parameter X, a trial basis;set of wave functions which also satisfy the correct boundary conditions at r --> infinity and r --> 0 are used to find the ground-state energy of the singular potential lambda/r(4) It is shown that the obtained eigenvalues are in excellent agreement with their exact ones for a very large range of lambda values.
Resumo:
Solid state M-4-Me-BP compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu, Zn, Pb and 4-Me-BP is 4-methylbenzylidenepyruvate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, elemental analysis, and complexometry were used to characterise and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated complexes. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Thermogravimetry, cyclic voltammetry and other analytical techniques were used to study the reactions of mercury with pure iridium. The results allowed to suggest when subjected to heat or anodic stripping voltammetry an electrodeposited mercury film reacts with Ir substrate and at least three mass loss steps and three peaks appear in the mercury desorption process. The first two were attributed to Hg(0) species removal like a mercury bulk and a mercury monolayer. The last can be ascribed to the mercury removal from a solid solution with iridium.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We construct the S-matrix for bound state (gauge-invariant) scattering for nonlinear sigma models defined on the manifold SU(n) S(U(p)⊗U(n-p)) with fermions. It is not possible to compute gauge non-singlet matrix elements. In the present language, constraints from higher conservation laws determine the bound state solution. An alternative derivation is also presented. © 1988.
Resumo:
Solid state compounds were prepared of Ln-4-MeO-BP, where Ln is a trivalent lanthanide (except promethium) or yttrium, and 4-MeO-BP is 4-methoxybenzylidenepyruvate. Thermogravimetry-derivative thermogravimetry (TG-DTG), differential scanning calorimetry (DSC) and other methods of analysis have been used to characterize and to study the thermal stability and thermal decomposition of these compounds. © 1993.
Resumo:
Solid-state compounds Ln-4Cl-BP, where Ln represents lighter trivalent lanthanides and 4Cl-BP is 4-chlorobenzylidenepyruvate, were prepared. Thermogravimetry, derivative thermogravimetry (TG and DTG), differential scanning calorimetry (DSC) and other methods of analysis were used to characterize and to study the thermal behaviour of these compounds.