887 resultados para CONVEX-SETS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The classification of minimal sets is a central theme in abstract topological dynamics. Recently this work has been strengthened and extended by consideration of homomorphisms. Background material is presented in Chapter I. Given a flow on a compact Hausdorff space, the action extends naturally to the space of closed subsets, taken with the Hausdorff topology. These hyperspaces are discussed and used to give a new characterization of almost periodic homomorphisms. Regular minimal sets may be described as minimal subsets of enveloping semigroups. Regular homomorphisms are defined in Chapter II by extending this notion to homomorphisms with minimal range. Several characterizations are obtained. In Chapter III, some additional results on homomorphisms are obtained by relativizing enveloping semigroup notions. In Veech's paper on point distal flows, hyperspaces are used to associate an almost one-to-one homomorphism with a given homomorphism of metric minimal sets. In Chapter IV, a non-metric generalization of this construction is studied in detail using the new notion of a highly proximal homomorphism. An abstract characterization is obtained, involving only the abstract properties of homomorphisms. A strengthened version of the Veech Structure Theorem for point distal flows is proved. In Chapter V, the work in the earlier chapters is applied to the study of homomorphisms for which the almost periodic elements of the associated hyperspace are all finite. In the metric case, this is equivalent to having at least one fiber finite. Strong results are obtained by first assuming regularity, and then assuming that the relative proximal relation is closed as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a topological vector space (X, τ ), we consider the family LCT (X, τ ) of all locally convex topologies defined on X, which give rise to the same continuous linear functionals as the original topology τ . We prove that for an infinite-dimensional reflexive Banach space (X, τ ), the cardinality of LCT (X, τ ) is at least c.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A counterpart of the Mackey–Arens Theorem for the class of locally quasi-convex topological Abelian groups (LQC-groups) was initiated in Chasco et al. (Stud Math 132(3):257–284, 1999). Several authors have been interested in the problems posed there and have done clarifying contributions, although the main question of that source remains open. Some differences between the Mackey Theory for locally convex spaces and for locally quasi-convex groups, stem from the following fact: The supremum of all compatible locally quasi-convex topologies for a topological abelian group G may not coincide with the topology of uniform convergence on the weak quasi-convex compact subsets of the dual groupG∧. Thus, a substantial part of the classical Mackey–Arens Theorem cannot be generalized to LQC-groups. Furthermore, the mentioned fact gives rise to a grading in the property of “being a Mackey group”, as defined and thoroughly studied in Díaz Nieto and Martín-Peinador (Proceedings in Mathematics and Statistics 80:119–144, 2014). At present it is not known—and this is the main open question—if the supremum of all the compatible locally quasi-convex topologies on a topological group is in fact a compatible topology. In the present paper we do a sort of historical review on the Mackey Theory, and we compare it in the two settings of locally convex spaces and of locally quasi-convex groups. We point out some general questions which are still open, under the name of Problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motion planning, or trajectory planning, commonly refers to a process of converting high-level task specifications into low-level control commands that can be executed on the system of interest. For different applications, the system will be different. It can be an autonomous vehicle, an Unmanned Aerial Vehicle(UAV), a humanoid robot, or an industrial robotic arm. As human machine interaction is essential in many of these systems, safety is fundamental and crucial. Many of the applications also involve performing a task in an optimal manner within a given time constraint. Therefore, in this thesis, we focus on two aspects of the motion planning problem. One is the verification and synthesis of the safe controls for autonomous ground and air vehicles in collision avoidance scenarios. The other part focuses on the high-level planning for the autonomous vehicles with the timed temporal constraints. In the first aspect of our work, we first propose a verification method to prove the safety and robustness of a path planner and the path following controls based on reachable sets. We demonstrate the method on quadrotor and automobile applications. Secondly, we propose a reachable set based collision avoidance algorithm for UAVs. Instead of the traditional approaches of collision avoidance between trajectories, we propose a collision avoidance scheme based on reachable sets and tubes. We then formulate the problem as a convex optimization problem seeking control set design for the aircraft to avoid collision. We apply our approach to collision avoidance scenarios of quadrotors and fixed-wing aircraft. In the second aspect of our work, we address the high level planning problems with timed temporal logic constraints. Firstly, we present an optimization based method for path planning of a mobile robot subject to timed temporal constraints, in a dynamic environment. Temporal logic (TL) can address very complex task specifications such as safety, coverage, motion sequencing etc. We use metric temporal logic (MTL) to encode the task specifications with timing constraints. We then translate the MTL formulae into mixed integer linear constraints and solve the associated optimization problem using a mixed integer linear program solver. We have applied our approach on several case studies in complex dynamical environments subjected to timed temporal specifications. Secondly, we also present a timed automaton based method for planning under the given timed temporal logic specifications. We use metric interval temporal logic (MITL), a member of the MTL family, to represent the task specification, and provide a constructive way to generate a timed automaton and methods to look for accepting runs on the automaton to find an optimal motion (or path) sequence for the robot to complete the task.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this note is to formulate an envelope theorem for vector convex programs. This version corrects an earlier work, “The envelope theorem for multiobjective convex programming via contingent derivatives” by Jiménez Guerra et al. (2010) [3]. We first propose a necessary and sufficient condition allowing to restate the main result proved in the alluded paper. Second, we introduce a new Lagrange multiplier in order to obtain an envelope theorem avoiding the aforementioned error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this paper is to analyse the sensitivity of a vector convex optimization problem according to variations in the right-hand side. We measure the quantitative behavior of a certain set of Pareto optimal points characterized to become minimum when the objective function is composed with a positive function. Its behavior is analysed quantitatively using the circatangent derivative for set-valued maps. Particularly, it is shown that the sensitivity is closely related to a Lagrange multiplier solution of a dual program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis is concerned with a number of problems in Combinatorial Set Theory. The Generalized Continuum Hypothesis is assumed. Suppose X and K are non-zero cardinals. By successively identifying K with airwise disjoint sets of power K, a function/: X-*•K can be viewed as a transversal of a pairwise disjoint (X, K)family A . Questions about families of functions in K can thus bethought of as referring to families of transversals of A. We wish to consider generalizations of such questions to almost disjoint families; in particular we are interested in extensions of the following two problems: (i) What is the 'maximum' cardinality of an almost disjoint family of functions each mapping X into K? (ii) Describe the cardinalities of maximal almost disjoint families of functions each mapping X into K. Article in Bulletin of the Australian Mathematical Society 27(03):477 - 479 · June 1983  

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper explores a new interpretation of experiments on foil rolling. The assumption that the roll remains convex is relaxed so that the strip profile may become concave, or thicken in the roll gap. However, we conjecture that the concave profile is associated with phenomena which occur after the rolls have stopped. We argue that the yield criterion must be satisfied in a nonconventional manner if such a phenomenon is caused plastically. Finite element analysis on an extrusion problem appears to confirm this conjecture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We generalize the classical notion of Vapnik–Chernovenkis (VC) dimension to ordinal VC-dimension, in the context of logical learning paradigms. Logical learning paradigms encompass the numerical learning paradigms commonly studied in Inductive Inference. A logical learning paradigm is defined as a set W of structures over some vocabulary, and a set D of first-order formulas that represent data. The sets of models of ϕ in W, where ϕ varies over D, generate a natural topology W over W. We show that if D is closed under boolean operators, then the notion of ordinal VC-dimension offers a perfect characterization for the problem of predicting the truth of the members of D in a member of W, with an ordinal bound on the number of mistakes. This shows that the notion of VC-dimension has a natural interpretation in Inductive Inference, when cast into a logical setting. We also study the relationships between predictive complexity, selective complexity—a variation on predictive complexity—and mind change complexity. The assumptions that D is closed under boolean operators and that W is compact often play a crucial role to establish connections between these concepts. We then consider a computable setting with effective versions of the complexity measures, and show that the equivalence between ordinal VC-dimension and predictive complexity fails. More precisely, we prove that the effective ordinal VC-dimension of a paradigm can be defined when all other effective notions of complexity are undefined. On a better note, when W is compact, all effective notions of complexity are defined, though they are not related as in the noncomputable version of the framework.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary aims of scoliosis surgery are to halt the progression of the deformity, and to reduce its severity (cosmesis). Currently, deformity correction is measured in terms of posterior parameters (Cobb angles and rib hump), even though the cosmetic concern for most patients is anterior chest wall deformity. In this study, we propose a new measure for assessing anterior chest wall deformity and examine the correlation between rib hump and the new measure. 22 sets of CT scans were retrieved from the QUT/Mater Paediatric Spinal Research Database. The Image J software (NIH) was used to manipulate formatted CT scans into 3-dimensional anterior chest wall reconstructions. A ‘chest wall angle’ was then measured in relation to the first sacral vertebral body. The chest wall angle was found to be a reliable tool in the analysis of chest wall deformity. No correlation was found between the new measure and rib hump angle. Since rib hump has been shown to correlate with vertebral rotation on CT, this suggests that there maybe no correlation between anterior and posterior deformity measures. While most surgical procedures will adequately address the coronal imbalance & posterior rib hump elements of scoliosis, they do not reliably alter the anterior chest wall shape. This implies that anterior chest wall deformity is to a large degree an intrinsic deformity, not directly related to vertebral rotation.