959 resultados para CONDENSADO DE BOSE-EINSTEIN
Resumo:
A general formula for the prediction of drained weight of canned prawn processed under laboratory condition has been worked out earlier (Chaudhuri et al., 1978). Attempts were made in this communication to modify the general formula to predict the drained weight under commercial conditions of processing particularly blanching, as the moisture content of meat depends on the quantum of heat received during blanching (Govindan, 1975).
Resumo:
Qualitative studies on the microflora of slime and guts of prawns and of sea water off Nagapattinam showed the presence of Vibrio in the slime and sea water. They were further tested for Vibrio parahaemolyticus types and related bio-types. Evidence of its occurrence is given. This points to the need for further studies on the distribution of this organism in terms of public health significance.
Resumo:
One unidentified species of copepod belonging to the genus Caliqus of the family Caigidae was found to infest the adult milkfish broodstock. To control the parasites infesting the adult milkfish, tests were made using the chemical (2,2,2-trichloro-1-hydroxyl)-phosphonic acid-dimethylethol (Neguvon) at a concentration of 0 . 25 ppm. It is noted that a concentration of 0 . 25 ppm of Neguvon maintained for 12-24 hours in the sabalo-containing tanks in a closed water system but with aeration is effective in controlling the parasites. Fish mortality during the experiment was due to inadequate aeration in the tanks.
Resumo:
Details are given of the construction of a water sampler for use in aquaculture work. The equipment is 3m long, light and easy to fabricate and operate in aquaculture ponds.
Planning the handling of tunnel excavation material - A process of decision making under uncertainty
Resumo:
Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions.
Resumo:
Superradiance (SR), or cooperative spontaneous emission, has been predicted by R. Dicke before the invention of the laser. During the last few years one can see a renaissance of both experimental and theoretical studies of the superradiant phase transition in a variety of media, ranging from quantum dots and Bose condensates through to black holes. Until recently, despite of many years of research, SR has been considered as a phenomenon of pure scientific interest without obvious potential applications. However, recent investigations of the femtosecond SR emission generation from semiconductors have opened up some practical opportunities for the exploitation of this quantum optics phenomenon. Here we present a brief review of some features, advantages and potential applications of the SR generation from semiconductor laser structures
Resumo:
Electron transport through two parallel quantum dots is a kind of solid-state realization of double path interference We demonstrate that the inter-clot Coulomb correlation and quantum coherence would result in strong current fluctuations with a divergent Fano factor at zero frequency. We also provide physical interpretation for this surprising result, which displays its generic feature and allows us to recover this phenomenon in more complicated systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We show that the Coulomb blockade in parallel dots pierced by magnetic flux Phi completely blocks the resonant current for any value of Phi except for integer multiples of the flux quantum Phi(0). This non-analytic (switching) dependence of the current on Phi arises only when the dot states that carry the current are of the same energy. The time needed to reach the steady state, however, diverges when Phi -> n Phi(0). Copyright (C) EPLA, 2009
Resumo:
We have studied the temperature dependence of absorption edge of GaN thin films grown on sapphire substrate by metal-organic chemical vapor deposition using optical absorption spectroscopy. A shift in absorption edge of about 55 meV has been observed in temperature range 273-343 K. We have proposed a theoretical model to find the energy gap from absorption coefficient using alpha = alpha(max) + (alpha(min) - alpha(max))/[1 + exp 2(E - E-g + KT)/KT]. Temperature dependence of band gap has also been studied by finding an appropriate theoretical fit to our data using E-g(T) = E-g(273 K) - (8.8 x 10(-4)T(2))/(483 + T) + 0.088 (Varshni empirical formula) and E-g(T) = E-g(273 K)-0.231447/[exp(362/T)-1] + 0.082 relations. It has been found that data can be fitted accurately after adding a factor similar to 0.08 in above equations. Debye temperature (483 K) and Einstein temperature (362 K) in the respective equations are found mutually in good agreement.
Resumo:
树枝形高分子具有几乎完美的分子结构,含有许多末端基团,并拥有特殊的流变行为使其在生物医药、基因治疗、光电材料等领域有广泛的应用前景。探讨树枝形高分子的代数和链节长度对其静态性质和动力学行为的影响规律,将有助于实现树枝形高分子的结构调控,为其广泛应用提供依据和指导。然而,目前系统研究代数和链节长度的研究仍然较少,还遗留很多问题没有得到解决,尤其是树枝形高分子的动力学行为。因此,本论文使用分子动力学的模拟方法探讨了树枝形高分子的静态性质和动力学行为,获得了如下结果: 1. 树枝形高分子的回转半径Rg满足标度律Rg~N1/5(G+1)2/5P2/5(其中树枝形分子的聚合度是N,代数是G,链节长度是P,子代代数是g。)。 2. 随着代数的增加,树枝形高分子的分形维数增加并接近3.0,静态结构因子和硬球的相似,表明其内部结构发生了由类星形向近球形转化。 3. 随着代数和链节长度的增加,出现了“单元”(monomer)密度几乎不变的区域,这是外层子代链节回折的结果。定量计算表明:树枝形分子的回折能力随着链节长度的增加而增强,随着代数的增加而减弱。 4. 树枝形高分子整体的扩散行为和“单元”的运动满足Zimm标度关系。 5. 树枝形分子各子代的运动速度不同,与内层子代相比,外层子代在短时间内扩散较慢,但其松弛较快。借助Stoke-Einstein扩散方程和链节的空间位阻效应,我们解释了子代速度不同的成因。
Resumo:
The diffusive transport properties in microscale convection flows are studied by using the direct simulation Monte Carlo method. The effective diffusion coefficient D is computed from the mean square displacements of simulated molecules based on the Einstein diffusion equation D = x2 t /2t. Two typical convection flows, namely, thermal creep convection and Rayleigh– Bénard convection, are investigated. The thermal creep convection in our simulation is in the noncontinuum regime, with the characteristic scale of the vortex varying from 1 to 100 molecular mean free paths. The diffusion is shown to be enhanced only when the vortex scale exceeds a certain critical value, while the diffusion is reduced when the vortex scale is less than the critical value. The reason for phenomenon of diffusion reduction in the noncontinuum regime is that the reduction effect due to solid wall is dominant while the enhancement effect due to convection is negligible. A molecule will lose its memory of macroscopic velocity when it collides with the walls, and thus molecules are hard to diffuse away if they are confined between very close walls. The Rayleigh– Bénard convection in our simulation is in the continuum regime, with the characteristic length of 1000 molecular mean free paths. Under such condition, the effect of solid wall on diffusion is negligible. The diffusion enhancement due to convection is shown to scale as the square root of the Péclet number in the steady convection regime, which is in agreement with previous theoretical and experimental results. In the oscillation convection regime, the diffusion is more strongly enhanced because the molecules can easily advect from one roll to its neighbor due to an oscillation mechanism. © 2010 American Institute of Physics. doi:10.1063/1.3528310
Resumo:
从可积系统求迹公式出发 ,运用Einstein Brillouin Keller(EBK)量子化条件 ,导出了二维无关联振子系统周期轨道作用量量子化条件 ,由此发现了量子能级与周期轨道之间的对应关系 .这种对应关系表明 ,如果两条能级对应的周期轨道的拓扑相同 ,这两条能级对回归函数的贡献相干 .回归谱中的一个峰是量子能谱中一组与具有相同拓扑的周期轨道相对应的能级之间相干的结果 ,这一组能级间存在着长程关联 .
Resumo:
We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f ( R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds.