862 resultados para Brain proteome
Resumo:
Endogenous oxidative stress is a likely cause of cardiac myocyte death in vivo. We examined the early (0-2 h) changes in the proteome of isolated cardiac myocytes from neonatal rats exposed to H2O2 (0.1 mM), focussing on proteins with apparent molecular masses of between 20 and 30 kDa. Proteins were separated by two-dimensional gel electrophoresis (2DGE), located by silver-staining and identified by mass spectrometry. Incorporation of [35S]methionine or 32Pi was also studied. For selected proteins, transcript abundance was examined by reverse transcriptase-polymerase chain reaction. Of the 38 protein spots in the region, 23 were identified. Two families showed changes in 2DGE migration or abundance with H2O2 treatment: the peroxiredoxins and two small heat shock protein (Hsp) family members: heat shock 27 kDa protein 1 (Hsp25) and alphaB-crystallin. Peroxiredoxins shifted to lower pI values and this was probably attributable to 'over-oxidation' of active site Cys-residues. Hsp25 also shifted to lower pI values but this was attributable to phosphorylation. alphaB-crystallin migration was unchanged but its abundance decreased. Transcripts encoding peroxiredoxins 2 and 5 increased significantly. In addition, 10 further proteins were identified. For two (glutathione S-transferase pi, translationally-controlled tumour protein), we could not find any previous references indicating their occurrence in cardiac myocytes. We conclude that exposure of cardiac myocytes to oxidative stress causes post-translational modification in two protein families involved in cytoprotection. These changes may be potentially useful diagnostically. In the short term, oxidative stress causes few detectable changes in global protein abundance as assessed by silver-staining.
Resumo:
Evidence shows that nutritional and environmental stress stimuli during postnatal period influence brain development and interactions between gut and brain. In this study we show that in rats, prevention of weaning from maternal milk results in depressive-like behavior, which is accompanied by changes in the gut bacteria and host metabolism. Depressive-like behavior was studied using the forced-swim test on postnatal day (PND) 25 in rats either weaned on PND 21, or left with their mother until PND 25 (non-weaned). Non-weaned rats showed an increased immobility time consistent with a depressive phenotype. Fluorescence in situ hybridization showed non-weaned rats to harbor significantly lowered Clostridium histolyticum bacterial groups but exhibit marked stress-induced increases. Metabonomic analysis of urine from these animals revealed significant differences in the metabolic profiles, with biochemical phenotypes indicative of depression in the non-weaned animals. In addition, non-weaned rats showed resistance to stress-induced modulation of oxytocin receptors in amygdala nuclei, which is indicative of passive stress-coping mechanism. We conclude that delaying weaning results in alterations to the gut microbiota and global metabolic profiles which may contribute to a depressive phenotype and raise the issue that mood disorders at early developmental ages may reflect interplay between mammalian host and resident bacteria.
Resumo:
Mechanisms and consequences of the effects of estrogen on the brain have been studied both at the fundamental level and with therapeutic applications in mind. Estrogenic hormones binding in particular neurons in a limbic-hypothalamic system and their effects on the electrophysiology and molecular biology of medial hypothalamic neurons were central in establishing the first circuit for a mammalian behavior, the female-typical mating behavior, lordosis. Notably, the ability of estradiol to facilitate transcription from six genes whose products are important for lordosis behavior proved that hormones can turn on genes in specific neurons at specific times, with sensible behavioral consequences. The use of a gene knockout for estrogen receptor alpha (ERalpha) revealed that homozygous mutant females simply would not do lordosis behavior and instead were extremely aggressive, thus identifying a specific gene as essential for a mammalian social behavior. In dramatic contrast, ERbeta knockout females can exhibit normal lordosis behavior. With the understanding, in considerable mechanistic detail, of how the behavior is produced, now we are also studying brain mechanisms for the biologically adaptive influences which constrain reproductive behavior. With respect to cold temperatures and other environmental or metabolic circumstances which are not consistent with successful reproduction, we are interested in thyroid hormone effects in the brain. Competitive relations between two types of transcription factors - thyroid hormone receptors and estrogen receptors have the potential of subserving the blocking effects of inappropriate environmental circumstances on female reproductive behaviors. TRs can compete with ERalpha both for DNA binding to consensus and physiological EREs and for nuclear coactivators. In the presence of both TRs and ERs, in transfection studies, thyroid hormone coadministration can reduce estrogen-stimulated transcription. These competitive relations apparently have behavioral consequences, as thyroid hormones will reduce lordosis, and a TRbeta gene knockout will increase it. In sum, we not only know several genes that participate in the selective control of this sex behavior, but also, for two genes, we know the causal routes. Estrogenic hormones are also the foci of widespread attention for their potential therapeutic effects improving, for example, certain aspects of mood and cognition. The former has an efficient animal analog, demonstrated by the positive effects of estrogen in the Porsolt forced swim test. The latter almost certainly depends upon trophic actions of estrogen on several fundamental features of nerve cell survival and growth. The hypothesis is raised that the synaptic effects of estrogens are secondary to the trophic actions of this type of hormone in the nucleus and nerve cell body.
Resumo:
In the vertebrate brain, the thalamus serves as a relay and integration station for diverse neuronal information en route from the periphery to the cortex. Deficiency of TH during development results in severe cerebral abnormalities similar to those seen in the mouse when the retinoic acid receptor (ROR)α gene is disrupted. To investigate the effect of the thyroid hormone recep-tors (TRs) on RORalpha gene expression, we used intact male mice, in which the genes encoding the α and beta TRs have been deleted. In situ hybridization for RORalpha mRNA revealed that this gene is expressed in specific areas of the brain including the thalamus, pons, cerebellum, cortex, and hippocampus. Our quantitative data showed differences in RORalpha mRNA expression in different subthalamic nuclei between wild-type and knock-out mice. For example, the centromedial nucleus of the thalamus, which plays a role in mediating nociceptive and visceral information from the brainstem to the basal ganglia and cortical regions, has less expression of RORalpha mRNA in the knockout mice (-37%) compared to the wild-type controls. Also, in the dorsal geniculate (+72%) and lateral posterior nuclei (+58%) we found more RORalpha mRNA in dKO as compared to dWT animals. Such differences in RORalpha mRNA expression may play a role in the behavioral alterations resulting from congenital hypothyroidism.
Resumo:
Estrogen is a ligand for the estrogen receptor (ER), which on binding 17beta-estradiol, functions as a ligand-activated transcription factor and regulates the transcription of target genes. This is the slow genomic mode of action. However, rapid non-genomic actions of estrogen also exist at the cell membrane. Using a novel two-pulse paradigm in which the first pulse rapidly initiates non-genomic actions using a membrane-limited estrogen conjugate (E-BSA), while the second pulse promotes genomic transcription from a consensus estrogen response element (ERE), we have demonstrated that rapid actions of estrogen potentiate the slower transcriptional response from an ERE-reporter in neuroblastoma cells. Since rapid actions of estrogen activate kinases, we used selective inhibitors in the two-pulse paradigm to determine the intracellular signaling cascades important in such potentiation. Inhibition of protein kinase A (PKA), PKC, mitogen activated protein kinase (MAPK) or phosphatidylinositol 3-OH kinase (PI-3K) in the first pulse decreases potentiation of transcription. Also, our data with both dominant negative and constitutive mutants of Galpha subunits show that Galpha(q) initiates the rapid signaling cascade at the membrane in SK-N-BE(2)C neuroblastoma cells. We discuss two models of multiple kinase activation at the membrane Pulses of estrogen induce lordosis behavior in female rats. Infusion of E-BSA into the ventromedial hypothalamus followed by 17beta-estradiol in the second pulse could induce lordosis behavior, demonstrating the applicability of this paradigm in vivo. A model where non-genomic actions of estrogen couple to genomic actions unites both aspects of hormone action.
Resumo:
Ligands for the nuclear receptor superfamily have at least two mechanisms of action: (a) classical transcriptional regulation of target genes (genomic mechanisms); and (b) non-genomic actions, which are initiated at the cell membrane, which could also impact transcription. Though transcriptional mechanisms are increasingly well understood, membrane-initiated actions of these ligands are incompletely understood. This has led to considerable debate over the physiological relevance of membrane-initiated actions of hormones versus genomic actions of hormones, with genomic actions predominating in the endocrine field. There is good evidence that the membrane-limited actions of hormones, particularly estrogens, involve the rapid activation of kinases and the release of calcium and that these are linked to physiologically relevant scenarios in the brain. We show evidence in this review, that membrane actions of estrogens, which activate these rapid signaling cascades, can also potentiate nuclear transcription in both the central nervous system and in non-neuronal cell lines. We present a theoretical scenario which can be used to understand this phenomenon. These signaling cascades may occur in parallel or in series but subsequently, converge at the modification of transcriptionally relevant molecules such as nuclear receptors and/or coactivators. In addition, other non-cognate hormones or neurotransmitters may also activate cascades to crosstalk with estrogen receptor-mediated transcription, though the relevance of this is less clear. The idea that coupling between membrane-initiated and genomic actions of hormones is a novel idea in neuroendocrinology and provides us with a unified view of hormone action in the central nervous system.
Resumo:
Although previous studies have addressed the question of why large brains evolved, we have limited understanding of potential beneficial or detrimental effects of enlarged brain size in the face of current threats. Using novel phylogenetic path analysis, we evaluated how brain size directly and indirectly, via its effects on life-history and ecology, influences vulnerability to extinction across 474 mammalian species. We found that larger brains, controlling for body size, indirectly increase vulnerability to extinction by extending the gestation period, increasing weaning age, and limiting litter sizes. However, we found no evidence of direct, beneficial or detrimental, effects of brain size on vulnerability to extinction, even when we explicitly considered the different types of threats that lead to vulnerability. Order-specific analyses revealed qualitatively similar patterns for Carnivora and Artiodactyla. Interestingly, for Primates, we found that larger brain size was directly (and indirectly) associated with increased vulnerability to extinction. Our results indicate that under current conditions the constraints on life-history imposed by large brains outweigh the potential benefits, undermining the resilience of the studied mammals. Contrary to the selective forces that have favoured increased brain size throughout evolutionary history, at present, larger brains have become a burden for mammals.
Resumo:
The Eag1 and Eag2, voltage-dependent potassium channels, and the small-conductance calcium-activated potassium channel (Kcnn3) are highly expressed in limbic regions of the brain, where their function is still unknown. Eag1 co-localizes with tyrosine hydroxilase enzyme in the substantia nigra and ventral tegmental area. Kcnn3 deficiency leads to enhanced serotonergic and dopaminergic neurotransmission accompanied by distinct alterations in emotional behaviors. As exposure to stress is able to change the expression and function of several ion channels, suggesting that they might be involved in the consequences of stress, we aimed at investigating Eag 1, Eag2 and Kcnn3 mRNA expression in the brains of rats submitted to isolation rearing. As the long-lasting alterations in emotional and behavioral regulation after stress have been related to changes in serotonergic neurotransmission, expressions of serotonin Htr1a and Htr2a receptors in male Wistar rats` brain were also investigated. Rats were reared in isolation or in groups of five for nine weeks after weaning. Isolated and socially reared rats were tested for exploratory activity in the open field test for 5 min and brains were processed for reverse-transcription coupled to quantitative polymerase chain reaction (qRT-PCR). Isolated reared rats showed decreased exploratory activity in the open field. Compared to socially reared rats, isolated rats showed reduced Htr2a mRNA expression in the striatum and brainstem and reduced Eag2 mRNA expression in all examined regions except cerebellum. To our knowledge, this is the first work to show that isolation rearing can change Eag2 gene expression in the brain. The involvement of this channel in stress-related behaviors is discussed.
Resumo:
Voltage-dependent anion channels (VDAC) are pore-forming proteins found in the outer mitochondrial membrane of eukaryotes. VDACs are known to play an essential role in cellular metabolism and in early stages of apoptosis. In mammals, three VDAC isoforms have been identified. A proteomic approach was exploited to study the expression of VDAC isoforms in rat, bovine, and chicken brain mitochondria. Given the importance of mitochondrially bound hexokinase in regulation of aerobic glycolysis in brain, we studied the possibility that differences in the relative expression of VDAC isoforms may be a factor in determining the species-dependent ratio of type A/type B hexokinase binding sites on brain mitochondria. The spots were characterized, and the signal intensities among spots were compared. VDAC1 was the most abundantly expressed of the three isoforms. Moreover the expression of VDAC1 plus VDAC2 was significantly higher in bovine than in rat brain. Chicken brain mitochondria showed the highest VDAC1 expression and the lowest of VDAC2. Bovine brain mitochondria had the highest VDAC2 levels. We concluded that the nature of hexokinase binding site is not determined by the expression of a single VDAC isoform.
Resumo:
Araucaria angustifolia is an endangered Brazilian native conifer tree. The aim of the present work was to identify differentially expressed proteins between mature and germinated embryos of A. angustifolia, using one and two dimensional gel electrophoresis approaches followed by protein identification by tandem mass spectrometry. The identities of 32 differentially expressed protein spots from two dimensional gel maps were successfully determined, including proteins and enzymes involved in storage mobilization such as the vicilin-like storage protein and proteases. A label free approach, based on spectral counts, resulted in detection of 10 and 14 mature and germinated enriched proteins, respectively. Identified proteins were mainly related to energetic metabolism pathways, translational processes. oxidative stress regulation and cellular signaling. The integrated use of both strategies permitted a comprehensive protein expression overview of changes in germinated embryos in relation to matures, providing insights into the this process in a recalcitrant seed species. Applications of the data generated on the monitoring and control of in vitro somatic embryos were discussed. Published by Elsevier Ltd.
Resumo:
In the developing cerebellum, proliferation of granular neuroprogenitor (GNP) cells lasts until the early postnatal stages when terminal maturation of the cerebellar cortex occurs. GNPs are considered cell targets for neoplastic transformation, and disturbances in cerebellar GNP cell proliferation may contribute to the development of pediatric medulloblastoma. At the molecular level, proliferation of GNPs is regulated through an orchestrated action of the SHH, NOTCH, and WNT pathways, but the underlying mechanisms still need to be dissected. Here, we report that expression of the E2F1 transcription factor in rat GNPs is inversely correlated with cell proliferation rate during postnatal development, as opposed to its traditional SHH-dependent induction of cell cycle. Proliferation of GNPs peaked at postnatal day 3 (P3), with a subsequent continuing decrease in proliferation rates occurring until P12. Such gradual decline in proliferating neuroprogenitors paralleled the extent of cerebellum maturation confirmed by histological analysis with cresyl violet staining and temporal expression profiling of SHH, NOTCH2, and WNT4 genes. A time course analysis of E2F1 expression in GNPs revealed significantly increased levels at P12, correlating with decreased cell proliferation. Expression of the cell cycle inhibitor p18 (Ink4c) , a target of E2F1, was also significantly higher at P12. Conversely, increased E2F1 expression did not correlate with either SMAC/DIABLO and BCL2 expression profiles or apoptosis of cerebellar cells. Altogether, these results suggest that E2F1 may also be involved in the inhibition of GNP proliferation during rat postnatal development despite its conventional mitogenic effects.
Resumo:
In this study we investigated energy metabolism in the mdx mouse brain. To this end, prefrontal cortex, cerebellum, hippocampus, striatum, and cortex were analyzed. There was a decrease in Complex I but not in Complex 11 activity in all structures. There was an increase in Complex III activity in striatum and a decrease in Complex IV activity in prefrontal cortex and striatum. Mitochondrial creatine kinase activity was increased in hippocampus, prefrontal cortex, cortex, and striatum. Our results indicate that there is energy metabolism dysfunction in the mdx mouse brain. Muscle Nerve 41: 257-260, 2010