944 resultados para Blood-loss
Resumo:
Different types of haematocytes found in the peripheral blood of walking catfish Clarias batrachus, have been characterized and identified using morphological, morphometric and cytochemical techniques. These cells are: erythrocytes, reticulocytes, large and small lymphocytes, thrombocytes, monocytes and polymorphonuclear leucocytes (neutrophils).
Resumo:
The sulfide binding characteristics of blood serum were studied in vitro in two deep-sea vesicomyid clams, Calyptogena pacifica and Vesicomya gigas. Both the C. pacifica and the V. gigas serum concentrated sulfide at least an order of magnitude above ambient levels. V. gigas accumulated sulfide faster than C. pacifica, reaching saturation at 5000 M after an hour. C. pacifica bound sulfide at half the rate of V. gigas, reaching saturation in about two hours at a substantially higher concentration of sulfide. The observed distribution of the animals near cold seeps in the Monterey Submarine Canyon can be explained by their different sulfide binding abilities. The hypothesis that cold seeps are actually much more unstable sources of sulfide than previously assumed is explored.
Resumo:
For a typical transonic turbine rotor blade, designed for use with coolant ejection, the trailing edge, or base loss is three to four times the profile boundary layer loss. The base region of such a profile is dominated by viscous effects and it seems essential to attack the problem of loss prediction by solving the compressible Navier-Stokes equations. However, such an approach is inevitably compromised by both numerical accuracy and turbulence modelling constraints. This paper describes a Navier-Stokes solver written for 2D blade-blade flows and employing a simple two-layer mixing length eddy viscosity model. Then, measured and predicted losses and base pressures are presented for two transonic rotor blades and attempts are made to assess the capabilities of the Navier-Stokes solver and to outline areas for future work.
Resumo:
Monolithic multisection mode-locked semiconductor lasers with an integrated distributed Bragg reflector (DBR) have recently been demonstrated to generate stable picosecond pulses at high repetition rates suitable for optical communication systems. However, there has been very little theoretical work on understanding the physical mechanisms of the device and on optimisation of the absorber modulator design. This article presents numerical modeling of the loss modulated mode-locking process in these lasers. The model predicts most aspects experimentally observed within this type of device, and the results show the output waveform, optical spectrum, instantaneous frequency chirp, and stable operating range.
Resumo:
A variety of hydrogenated and non-hydrogenated amorphous carbon thin films have been characterized by means of grazing-incidence X-ray reflectivity (XRR) to give information about their density, thickness, surface roughness and layering. We used XRR to validate the density of ta-C, ta-C:H and a-C:H films derived from the valence plasmon in electron energy loss spectroscopy measurements, up to 3.26 and 2.39 g/cm3 for ta-C and ta-C:H, respectively. By comparing XRR and electron energy loss spectroscopy (EELS) data, we have been able for the first time to fit a common electron effective mass of m*/me = 0.87 for all amorphous carbons and diamond, validating the `quasi-free' electron approach to density from valence plasmon energy. While hydrogenated films are found to be substantially uniform in density across the film, ta-C films grown by the filtered cathodic vacuum arc (FCVA) show a multilayer structure. However, ta-C films grown with an S-bend filter show a high uniformity and only a slight dependence on the substrate bias of both sp3 and layering.
Resumo:
This analysis is concerned with the calculation of the elastic wave transmission coefficients and coupling loss factors between an arbitrary number of structural components that are coupled at a point. A general approach to the problem is presented and it is demonstrated that the resulting coupling loss factors satisfy reciprocity. A key aspect of the method is the consideration of cylindrical waves in two-dimensional components, and this builds upon recent results regarding the energetics of diffuse wavefields when expressed in cylindrical coordinates. Specific details of the method are given for beam and thin plate components, and a number of examples are presented. © 2002 Acoustical Society of America.
Resumo:
A study of the three-dimensional stator-rotor interaction in a turbine stage is presented. Experimental data reveal vortices downstream of the rotor which are stationary in the absolute frame - indicating that they are caused by the stator exit flowfield. Evidence of the rotor hub passage vortices is seen, but additional vortical structures away from the endwalls, which would not be present if the rotor were tested in isolation, are also identified. An unsteady computation of the rotor row is performed using the measured stator exit flowfield as the inlet boundary condition. The strength and location of the vortices at rotor exit are predicted. A formation mechanism is proposed whereby stator wake fluid with steep spanwise gradients of absolute total pressure is responsible for all but one of the rotor exit vortices. This mechanism is then verified computationally using a passive-scalar tracking technique. The predicted loss generation through the rotor row is then presented and a comparison made with a steady calculation where the inlet flow has been mixed out to pitchwise uniformity. The loss produced in the steady simulation, even allowing for the mixing loss at inlet, is 10% less than that produced in the unsteady simulation. This difference highlights the importance of the time-accurate calculation as a tool of the turbomachine designer.
Resumo:
This paper presents an investigation into the losses in a three-phase induction motor under different pulse width modulation (PWM) excitation conditions. The impacts of Sinusoidal PWM, Space Vector PWM and Discontinuous PWM on machine loss are compared and studied. Finite element analysis simulations are employed to predict the machine losses with the loss breakdown analysis under different PWM schemes. Direct Calorimetric measurements are utilized to verify the finite element modeling and provide direct quantifications of machine loss under modern PWM techniques. © 2008 IEEE.
Resumo:
Adopting square wave excitation to drive induction motors (IMs) can substantially reduce inverter switching losses. However, the low-order time harmonics inherent in the output voltage generates parasitic torques that degrade motor performance and reduce efficiency. In this paper, a novel harmonic elimination modulation technique with full voltage control is studied as an interesting and alternative means of operating small (<1kW) IM drives efficiently. A fully verified harmonic elimination scheme, which removes the 5th, 7th, 11th, 13th and 17 th time harmonics, was implemented and applied to an IGBT driven IM. The power losses incurred in the inverter and the IM as a result of the switching scheme have been determined. © 2008 Crown copyright.
Resumo:
CpG islands (CGIs) are often considered as gene markers, but the number of CGIs varies among mammalian genomes that have similar numbers of genes. In this study, we investigated the distribution of CGIs in the promoter regions of 3,197 human-mouse ortholo
Resumo:
Protein electrophoresis was used to examine the blood protein polymorphism in Yunnan local pig breeds, i.e., the Saba pig, Dahe pig, and Diannan small-ear pig breeds, Of 38 genetic loci surveyed 9 were found to be polymorphic. The percentage of polymorphic loci (P) varies from 0.1875 to 0.2121, and the mean individual heterozygosity (H) varies front 0.0712 to 0.1027 in three pig breeds. The results indicate that blood protein polymorphism in Yunnan pig breeds is high. Yunnan local pig breeds have a wealth of genetic diversity at the level of blood proteins.
Resumo:
In observation of in vitro phagocytic activity against Aeromonas hydrophila isolate 34k (a virulent form) and Escherichia coli (an avirulent bacteria) of neutrophil- and monocyte-like cells of walking catfish Clarias batrachus showed phagocytosis. N eutrophils and monocytes phagocytized the avirulent form of bacterial isolate more than the virulent one. Other blood leucocytes did not show phagocytosis. Peritoneal macrophage of the fish were separated by glycogen elicitation and the macrophages were being adhered on plastic cover slips for studying their in vitro phagocytic activity. Most of the cells were alive after adherence and showed phagocytosis against the virulent and avirulent bacteria. The percent phagocytosis and phagocytic index were higher against the avirulent E. coli than the virulent A. hydrophila.
Resumo:
A specific blood coagulation factor X activator was purified from the venom of Ophiophagus hannah by gel filtration and two steps of FPLC Mono-Q column ion-exchange chromatography. It showed a single protein band both in sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and alkaline polyacrylamide gel electrophoresis. The mol. wt was estimated to be 62,000 in non-reducing conditions and 64,500 in reducing conditions by SDS-PAGE. The isoelectric point was found to be pH 5.6. The enzyme had weak amidolytic activities toward CBS 65-25, but it showed no activities on S-2266, S-2302, thrombin substrate S-2238, plasmin substrate S-2251 or factor Xa substrate S-2222. It had no arginine esterase activity toward substrate benzoylarginine ethylester (BAEE). The enzyme activated factor X in vitro and the effect was absolutely Ca2+ dependent, with a Hill coefficient of 6.83. It could not activate prothrombin nor had any effect on fibrinogen and thus appeared to act specifically on factor X. The procoagulant activity of the enzyme was almost completely inhibited by serine protease inhibitors like PMSF, TPCK and soybean trypsin inhibitor; partially inhibited by L-cysteine. Metal chelator EDTA did not inhibit its procoagulant activity. These results suggest that the factor X activator from O. hannah venom is a serine protease.
Resumo:
A specific activator of blood coagulation factor X was purified from the venom of Bungarus fasciatus by gel filtration and by ion-exchange chromatography on a Mono-Q column (FPLC). It consisted of a single polypeptide chain, with a mel. wt of 70,000 in reducing and non-reducing conditions. The enzyme had an amidolytic activity towards the chromogenic substrates S-2266 and S-2302 but it did not hydrolyse S-2238, S2251 or S-2222, which are specific substrates for thrombin, plasmin and factor Xa, respectively. The enzyme activated factor X in vitro and the effect was Ca2+ dependent with a Hill coefficient of 7.9. As with physiological activators, the venom activator cleaves the heavy chain of factor X, producing the activated factor Xa alpha. The purified factor X activator from B. fasciatus venom did not activate prothrombin, nor did it cleave or clot purified fibrinogen. The amidolytic activity and the factor X activation activity of the factor X activator from B. fasciatus venom were readily inhibited by serine protease inhibitors such as diisopropyl fluorophosphate (DFP), phenylmethanesulfonyl fluoride (PMSF), benzamidine and by soybean trypsin inhibitor but not by EDTA. These observations suggest that the factor X activator from B. fasciatus venom is a serine protease. It therefore differs from those of activators obtained from Vipera russelli and Bothrops atrox venoms, which are metalloproteinases.