956 resultados para Biodiesel. Cucumis melo l. Liquid-liquid equilibrium. NRTL. UNIQUAC
Resumo:
P>Background: We aimed to evaluate the ascorbic acid concentration in secondary aqueous humour (AH) from glaucomatous patients and to compare it with primary AH from primary open-angle glaucoma patients and non-glaucomatous patients. Methods: Primary AH samples were prospectively obtained from clinically uncontrolled primary open-angle glaucoma patients and senile cataract patients (controls) prior to trabeculectomy and cataract surgery. Secondary AH samples were obtained from eyes with previous intraocular surgery, prior to trabeculectomy or cataract surgery. AH (0.1 mL) was aspirated by inserting a 26-gauge needle into the anterior chamber just before surgery and then immediately stored at -80 degrees C. The ascorbic acid concentration was determined in a masked fashion by high-pressure liquid chromatography. Results: A total of 18 patients with senile cataract, 16 glaucomatous patients with primary AH (no previous intraocular surgery) and 11 glaucomatous patients with secondary AH (previous intraocular surgery) were included. There was no difference in mean age between groups (P = 0.15). The mean +/- standard deviation concentration of ascorbic acid in the secondary AH from glaucomatous patients (504 +/- 213 mu mol/L [95% confidence interval {CI}, 383-624]) was significantly lower than the concentration of ascorbic acid found in the primary aqueous of primary open-angle glaucoma (919 +/- 427 mu mol/L [95% CI, 709-1128]) and control patients (1049 +/- 433 mu mol/L [95% CI, 848-1249]; P < 0.01, Kruskal-Wallis test). Conclusions: The ascorbic acid concentration in secondary AH of glaucomatous patients was approximately twofold lower in comparison with primary AH of glaucomatous and cataract patients. The implications of a reduced concentration of ascorbic acid in the secondary AH deserve further investigation.
Resumo:
A nuclear magnetic resonance ((1)H NMR) method for the determination of beta-N-methylamino-L-alanine (L-BMAA) in environmental aqueous samples was developed and validated. L-BMAA is a neurotoxic modified amino acid that can be produced by cyanobacteria in aqueous environments. This toxin was extracted from samples by means of solid-phase extraction (SPE) and identified and quantified by (1)H NMR without further derivatization steps. The lower limit of quantification (LLOQ) was 5 mu g/mL Good inter and intra-assay precision was also observed (relative standard deviation <8.5%) with the use of 4-nitro-DL-phenylalanine as an internal standard (IS). This method of 1H NMR analysis is not time consuming and can be readily utilized to monitor L-BMAA and confirm its presence in environmental and biological samples. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Development and Characterization of L-Alanyl-L-Glutamine Containing Pellets employing Extrusion-Spheronization Method and Drying Process in Fluidized Bad Equipment"". In this work, five formulations of L-alanyl-L-glutamine (glutamine dipeptide) containing pellets with different drug concentration were developed and evaluated: F1 (9.07%); F2 (17.70%); F3 (27.98%); F4 (37.74%) e F5 (47.53%). Pellets were prepared by extrusion-spheronization method and, further, dried in fluidized bad equipment. The following assays were carried out with the batches obtained: granulometry, friability, true density and morphologic analysis. Between the five formulations evaluated, pellets obtained from F3 present best yield (75.80%), most uniform particle size distribution (89.67% of pellets with size in the range of 0.80 to 1.18), most high true density (2.1634 g/ml) and best aspect (1.0795 +/- 0.0410). Due to these features, pellets obtained from F3 were considered adequate to further polymeric coating process in order to produce a multiparticulate system to prolong L-alanyl-L-glutamine release.
Resumo:
This study describes an accurate, sensitive, and specific chromatographic method for the simultaneous quantitative determination of lamivudine and zidovudine in human blood plasma, using stavudine as an internal standard. The chromatographic separation was performed using a C8 column (150 x 4.6 mm, 5 mu m), and ultraviolet absorbency detection at 270 nm with gradient elution. Two mobile phases were used. Phase A contained 10 mM potassium phosphate and 3% acetonitrile, whereas Phase B contained methanol. A linear gradient was used with a variability of A-B phase proportion from 98-2% to 72-28%, respectively. The drug extraction was performed with two 4 mL aliquots of ethyl acetate.
Resumo:
Choline citrate (CC) and acetylmethionine (AM) are lipotropic drugs used in several pharmaceutical formulations. The objective of this research was to develop and validate a high performance liquid chromatographic (HPLC) method for simultaneous determination of CC and AM in injectable solutions, aiming its application in routine analysis for quality control of these pharmaceutical formulations. The method was validated using a Shim-Pack (R) C18 (250 x 4.6 mm, 5 mu m) column. The mobile phase was constituted of 25 mM potassium phosphate buffer solution, pH 5.7, adjusted with 10 % orthophosphoric acid, acetonitrile and methanol (88:10:2, v/v/v). The flow rate was 1.1 mL.min(-1) and the UV detection was made at 210 nm. The analyses were made at room temperature (25 +/- 1 degrees C). The method is precise, selective, accurate and robust, and was successfully applied for simultaneous quantitative determination of CC and AM in injectables.
Resumo:
A reversed-phase high performance liquid chromatographic (RP-HPLC) method for determination of econazole nitrate, preservatives (methylparaben and propylparaben) and its main impurities (4-chlorobenzl alcohol and alpha-(2,4-dicholorophenyl)-1H-imidazole-1-ethanol) in cream formulations, has been developed and validated. Separation was achieved on a column Bondclone (R) C18 (300 mm x 3.9 mm i.d., 10 mu m) using a gradient method with mobile phase composed of methanol and water. The flow rate was 1.4 mL min(-1), temperature of the column was 25 C and the detection was made at 220 nm. Miconazole nitrate was used as an internal standard. The total run time was less than 15 min, The analytical curves presented coefficient of correlation upper to 0.99 and detection and quantitation limits were calculated for all molecules. Excellent accuracy and precision were obtained for econazole nitrate. Recoveries varied from 97.9 to 102.3% and intra- and inter-day precisions, calculated as relative standard deviation (R.S.D), were lower than 2.2%. Specificity, robustness and assay for econazole nitrate were also determined. The method allowed the quantitative determination of econazole nitrate, its impurities and preservatives and could be applied as a stability-indicating method for econazole nitrate in cream formulations. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to develop and validate selective and sensitive methods for quantitative determination of an antibacterial agent, gemifloxacin, in tablets by high performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). The HPLC method was carried out on a LiChrospher (R) 100 RP-8e, 5 mu m (125 x 4 mm) column with a mobile phase composed of tetrahydrofuran-water (25:75, v/v) with 0.5 % of triethylamine and pH adjusted to 3.0 with orthophosphoric acid. The CZE method was performed using 50 mM sodium tetraborate buffer (pH 8.6). Samples were injected hydrodynamicaly (0.5 psi, 5 s) and the electrophoretic system was operated under normal polarity, at +20 kV and capillary temperature of 18 degrees C. A fused-silica capillary 40.2 cm (30 cm effective length) x 75 mu m i.d. was used. Both, HPLC and CZE could be interesting and efficient techniques to be applied for quality control in pharmaceutical industries.
Resumo:
This work is the first attempt to apply aqueous two-phase mixed micellar systems (ATPMS) of the nonionic surfactant Triton X-114 and the anionic one AOT to extract clavulanic acid (CA) from broth fermented by Streptomyces clavuligerus. Cloud points were determined in McIlvane buffer pH 6.5 with or without NaCl, and diagram phases/coexistence curves were constructed. CA partition was investigated following a 2(4)-full factorial design in which AOT (0.022, 0.033 and 0.044% w/w), Triton X-114 (1.0, 3.0 and 5.0% w/w) and NaCl (0, 2.85 and 5.70% w/w) concentrations and temperature (24,26 and 28 degrees C) were selected as independent variables, and CA partition coefficient (K(CA)) and yield in the top phase (eta(CA)) as responses. CA partitioned always to the top, micelle-poor phase. The regression analysis pointed out that NaCl concentration and interaction between temperature and Triton X-114 concentration had statistically significant effects on K(CA), while eta(CA) was mainly influenced by temperature, Triton X-114 concentration and their interaction. Different ATPMS compositions were then needed to maximize these responses, specifically 0.022% (w/w) AOT, 5% (w/w) Triton X-114 for K(CA) (2.08), and 0.044% (w/w) AOT, 1% (w/w) Triton X-114 for eta(CA) (98.7%), both at 24 degrees C without NaCl. Since at 0.022% (w/w) AOT, 1% (w/w) Triton X-114 and 28 degrees C without NaCl the system was able to ensure satisfactory intermediate results (K(CA) = 1.48; eta(CA) = 86.3%), these conditions were selected as the best ones. These preliminary results are of concern for possible industrial application, because CA partition to the dilute phase can simplify the subsequent purification protocol. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Nisin is a natural additive for conservation of food, and can also be used as a therapeutic agent. Nisin inhibits the outgrowth of spores, the growth of a variety of Gram-positive and Grain-negative bacteria. In this paper we present a potentially scalable and cost-effective way to purify commercial and biosynthesized in bioreactor nisin, including simultaneously removal of impurities and contaminants, increasing nisin activity. Aqueous two-phase micellar systems (ATPMS) are considered promising for bioseparation and purification purposes. Triton X-114 was chosen as the as phase-forming surfactant because it is relatively mild to proteins and it also forms two coexisting phases within a convenient temperature range. Nisin activity was determined by the agar diffusion assay utilizing Lactobacillus sake as a sensitive indicator microorganism. Results indicated that nisin partitions preferentially to the micelle rich-phase, despite the surfactant concentration tested, and its antimicrobial activity increases. The successful implementation of this peptide partitioning, from a suspension containing other compounds, represents an important step towards developing a separation method for nisin, and more generally, for other biomolecules of interest. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
High performance liquid chromatographic (HPLC) and UV derivative spectrophotometric (UVDS) methods were developed and validated for the quantitative determination of sotalol hydrochloride in tablets. The HPLC method was performed on a C18 column with fluorescence detection. The excitation and emission wavelengths were 235 and 310nm, respectively. The mobile phase was composed of acetonitrile-water containing 0.1% trietylamine (7:93v/v) and pH adjusted to 4.6 with formic acid. The UVDS method was performed taking a signal at 239.1nm in the first derivative. The correlation coefficients (r) obtained were 0.9998 and 0.9997 for HPLC and UVDS methods, respectively. The proposed methods are simple and adaptable to routine analysis.
Resumo:
The purpose of this study was to develop and validate analytical methods for determination of amlodipine besylate in tablets. Simple, accurate and precise liquid chromatographic and spectrophotometric methods are proposed. For the chromatographic method, the conditions were: a LiChrospher (R) 100 RP-18 Merck (R) (125 mm x 4.6 mm, 5 mu m) column; methanol/water containing 1 % of trietylamine adjusted to pH 5.0 with phosphoric acid (35:65) as mobile phase; a flow rate of 1.0 mL/min and UV detector at 238 nm. Linearity was in the range of 50.0 - 350.0 mu g/mL with a correlation coefficient (r) = 0.9999. For the spectrophotometric method, the first dilutions of samples were performed in methanol and the consecutives in ultrapure water. The quantitation was made at 364.4 nm. Linearity was determined within the range of 41.0 - 61.0 mu g/mL with a correlation coefficient (r) = 0.9996. Our results demonstrate that both methods can be used in routine analysis for quality control of tablets containing amlodipine besylate.
Resumo:
A selective method using three-phase liquid-phase microextraction (LPME) in conjunction with LC-MS-MS was devised for the enantioselective determination of chloroquine and its n-dealkylated metabolites in plasma samples. After alkalinization of the samples, the analytes were extracted into n-octanol immobilized in the pores of a polypropylene hollow fiber membrane and back extracted into the acidic acceptor phase (0.1 M TFA) filled into the lumen of the hollow fiber. Following LPME, the analytes were resolved on a Chirobiotic V column using methanol/ACN/glacial aceti acid/diethylamine (90:10:0.5:0.5 by volume) as the mobile phase. The MS detection was carried out using multiple reaction monitoring with ESI in the positive ion mode. The optimized LPME method yielded extraction recoveries ranging from 28 to 66%. The method was linear over 5 - 500 ng/mL and precision (RSD) and accuracy (relative error) values were below 15% for all analytes. The developed method was applied to the determination of the analytes in rat plasma samples after oral administration of the racemic drug.
Resumo:
A simple and rapid method, which involves liquid-phase microextraction (LPME) followed by HPLC analysis using Chiralpak AD column and UV detection, was developed for the enantioselective determination of mefloquine in plasma samples. Several factors that influence the efficiency of three-phase LPME were investigated and optimized. Under the optimal extraction conditions, the mean recoveries were 33.2 and 35.0% for (-)-(SR-)-mefloquine and (+)-(RS)-mefloquine, respectively. The method was linear over 50-1500 ng/ml range. Within-day and between-day assay precision and accuracy were below 15% for both enantiomers at concentrations of 150, 600 and 1200 ng/ml. Furthermore, no racemization or degradation were seen with the method described. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
A high-performance liquid chromatographic method with triple-quadrupole mass spectrometry detection (LC-MS-MS) was developed and validated for the first time for the simultaneous quantification of zopiclone and its metabolites in rat plasma samples. The analytes were isolated from rat plasma by liquid-liquid extraction and separated using a chiral stationary phase based on an amylose derivative, Chiralpak ADR-H column, and ethanol-methanol-acetonitrile (50:45:5, v/v/v) plus 0.025% diethylamine as the mobile phase, at a flow-rate of 1.0 mL min(-1). Moclobemide was used as the internal standard. The developed method was linear over the concentration range of 7.5-500 ng mL(-1). The mean absolute recoveries were 74.6 and 75.7; 61.6 and 56.9; 72.5, and 70.7 for zopiclone enantiomers, for N-desmethyl zopiclone enantiomers and for zopiclone-N-oxide enantiomers, respectively, and 75.9 for the internal standard. Precision and accuracy were within acceptable levels of confidence (<15%). The method application in a pilot study of zopiclone kinetic disposition in rats showed that the levels of (+)-(S)-zopiclone were always higher than those of (-)-R-zopiclone. Higher concentrations were also observed for (+)-(S)-N-desmethyl zopiclone and (+)-(S)-N-oxide zopiclone, confirming the stereoselective disposition of zopiclone.
Resumo:
An enantioselective liquid chromatographic method using two-phase hollow fiber liquid-phase microextraction (HF-LPME-HPLC) was developed for the determination of isradipine (ISR) enantiomers and its main metabolite (pyridine derivative of isradipine, PDI) in microsomal fractions isolated from rat liver. The analytes were extracted from 1 mL of microsomal medium using a two-phase HF-LPME procedure with hexyl acetate as the acceptor phase, 30 min of extraction, and sample agitation at 1,500 rpm. For the first time, ISR enantiomers and PDI were resolved. For this separation, a ChiralpakA (R) AD column with hexane/2-propanol/ethanol (94:04:02, v/v/v) as the mobile phase at a flow rate of 1.5 mL min(-1) was used. The column was kept at 23 A +/- 2 A degrees C. The drug and metabolite detection was performed at 325 nm and the internal standard oxybutynin was detected at 225 nm. The recoveries were 23% for PDI and 19% for each ISR enantiomer. The method presented quantification limits (LOQ) of 50 ng mL(-1) and was linear over the concentration range of 50-5,000 and 50-2,500 ng mL(-1) for PDI and each ISR enantiomer, respectively. The validated method was employed to an in vitro biotransformation study of ISR using rat liver microsomal fraction showing that (+)-(S)-ISR is preferentially biotransformed.