977 resultados para Binomial theorem.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'éclatement est une transformation jouant un rôle important en géométrie, car il permet de résoudre des singularités, de relier des variétés birationnellement équivalentes, et de construire des variétés possédant des propriétés inédites. Ce mémoire présente d'abord l'éclatement tel que développé en géométrie algébrique classique. Nous l'étudierons pour le cas des variétés affines et (quasi-)projectives, en un point, et le long d'un idéal et d'une sous-variété. Nous poursuivrons en étudiant l'extension de cette construction à la catégorie différentiable, sur les corps réels et complexes, en un point et le long d'une sous-variété. Nous conclurons cette section en explorant un exemple de résolution de singularité. Ensuite nous passerons à la catégorie symplectique, où nous ferons la même chose que pour le cas différentiable complexe, en portant une attention particulière à la forme symplectique définie sur la variété. Nous terminerons en étudiant un théorème dû à François Lalonde, où l'éclatement joue un rôle clé dans la démonstration. Ce théorème affirme que toute 4-variété fibrée par des 2-sphères sur une surface de Riemann, et différente du produit cartésien de deux 2-sphères, peut être équipée d'une 2-forme qui lui confère une structure symplectique réglée par des courbes holomorphes par rapport à sa structure presque complexe, et telle que l'aire symplectique de la base est inférieure à la capacité de la variété. La preuve repose sur l'utilisation de l'éclatement symplectique. En effet, en éclatant symplectiquement une boule contenue dans la 4-variété, il est possible d'obtenir une fibration contenant deux sphères d'auto-intersection -1 distinctes: la pré-image du point où est fait l'éclatement complexe usuel, et la transformation propre de la fibre. Ces dernières sont dites exceptionnelles, et donc il est possible de procéder à l'inverse de l'éclatement - la contraction - sur chacune d'elles. En l'accomplissant sur la deuxième, nous obtenons une variété minimale, et en combinant les informations sur les aires symplectiques de ses classes d'homologies et de celles de la variété originale nous obtenons le résultat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le sujet principal de cette thèse est la distribution des nombres premiers dans les progressions arithmétiques, c'est-à-dire des nombres premiers de la forme $qn+a$, avec $a$ et $q$ des entiers fixés et $n=1,2,3,\dots$ La thèse porte aussi sur la comparaison de différentes suites arithmétiques par rapport à leur comportement dans les progressions arithmétiques. Elle est divisée en quatre chapitres et contient trois articles. Le premier chapitre est une invitation à la théorie analytique des nombres, suivie d'une revue des outils qui seront utilisés plus tard. Cette introduction comporte aussi certains résultats de recherche, que nous avons cru bon d'inclure au fil du texte. Le deuxième chapitre contient l'article \emph{Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities}, qui est le fruit de recherche conjointe avec le professeur Greg Martin. Le but de cet article est d'étudier un phénomène appelé le <>, qui s'observe dans les <>. Chebyshev a observé qu'il semble y avoir plus de premiers de la forme $4n+3$ que de la forme $4n+1$. De manière plus générale, Rubinstein et Sarnak ont montré l'existence d'une quantité $\delta(q;a,b)$, qui désigne la probabilité d'avoir plus de premiers de la forme $qn+a$ que de la forme $qn+b$. Dans cet article nous prouvons une formule asymptotique pour $\delta(q;a,b)$ qui peut être d'un ordre de précision arbitraire (en terme de puissance négative de $q$). Nous présentons aussi des résultats numériques qui supportent nos formules. Le troisième chapitre contient l'article \emph{Residue classes containing an unexpected number of primes}. Le but est de fixer un entier $a\neq 0$ et ensuite d'étudier la répartition des premiers de la forme $qn+a$, en moyenne sur $q$. Nous montrons que l'entier $a$ fixé au départ a une grande influence sur cette répartition, et qu'il existe en fait certaines progressions arithmétiques contenant moins de premiers que d'autres. Ce phénomène est plutôt surprenant, compte tenu du théorème des premiers dans les progressions arithmétiques qui stipule que les premiers sont équidistribués dans les classes d'équivalence $\bmod q$. Le quatrième chapitre contient l'article \emph{The influence of the first term of an arithmetic progression}. Dans cet article on s'intéresse à des irrégularités similaires à celles observées au troisième chapitre, mais pour des suites arithmétiques plus générales. En effet, nous étudions des suites telles que les entiers s'exprimant comme la somme de deux carrés, les valeurs d'une forme quadratique binaire, les $k$-tuplets de premiers et les entiers sans petit facteur premier. Nous démontrons que dans chacun de ces exemples, ainsi que dans une grande classe de suites arithmétiques, il existe des irrégularités dans les progressions arithmétiques $a\bmod q$, avec $a$ fixé et en moyenne sur $q$.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans ce mémoire, nous traiterons du théorème de Lebesgue, un des plus frappants et des plus importants de l'analyse mathématique ; à savoir qu'une fonction à variation bornée est dérivable presque partout. Le but de ce travail est de fournir, à part la démonstration souvent proposée dans les cours de la théorie de la mesure, d'autres démonstrations élaborées avec des outils mathématiques plus simples. Ma contribution a consisté essentiellement à détailler et à compléter ces démonstrations, puis à inclure la plupart des figures pour une meilleure lisibilité. Nous allons maintenant, pour ce théorème qui se présente sous d'autres variantes, en proposer l'historique et trois démonstrations différentes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le théorème ergodique de Birkhoff nous renseigne sur la convergence de suites de fonctions. Nous nous intéressons alors à étudier la convergence en moyenne et presque partout de ces suites, mais dans le cas où la suite est une suite strictement croissante de nombres entiers positifs. C’est alors que nous définirons les suites uniformes et étudierons la convergence presque partout pour ces suites. Nous regarderons également s’il existe certaines suites pour lesquelles la convergence n’a pas lieu. Nous présenterons alors un résultat dû en partie à Alexandra Bellow qui dit que de telles suites existent. Finalement, nous démontrerons une équivalence entre la notion de transformatiuon fortement mélangeante et la convergence d'une certaine suite qui utilise des “poids” qui satisfont certaines propriétés.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le sujet visé par cette dissertation est la logique ordinale de Turing. Nous nous référons au texte original de Turing «Systems of logic based on ordinals» (Turing [1939]), la thèse que Turing rédigea à Princeton sous la direction du professeur Alonzo Church. Le principe d’une logique ordinale consiste à surmonter localement l’incomplétude gödelienne pour l’arithmétique par le biais de progressions d’axiomes récursivement consistantes. Étant donné son importance considérable pour la théorie de la calculabilité et les fondements des mathématiques, cette recherche méconnue de Turing mérite une attention particulière. Nous retraçons ici le projet d’une logique ordinale, de ses origines dans le théorème d’incomplétude de Gödel jusqu'à ses avancées dans les développements de la théorie de la calculabilité. Nous concluons par une discussion philosophique sur les fondements des mathématiques en fonction d’un point de vue finitiste.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gowers, dans son article sur les matrices quasi-aléatoires, étudie la question, posée par Babai et Sos, de l'existence d'une constante $c>0$ telle que tout groupe fini possède un sous-ensemble sans produit de taille supérieure ou égale a $c|G|$. En prouvant que, pour tout nombre premier $p$ assez grand, le groupe $PSL_2(\mathbb{F}_p)$ (d'ordre noté $n$) ne posséde aucun sous-ensemble sans produit de taille $c n^{8/9}$, il y répond par la négative. Nous allons considérer le probléme dans le cas des groupes compacts finis, et plus particuliérement des groupes profinis $SL_k(\mathbb{Z}_p)$ et $Sp_{2k}(\mathbb{Z}_p)$. La premiére partie de cette thése est dédiée à l'obtention de bornes inférieures et supérieures exponentielles pour la mesure suprémale des ensembles sans produit. La preuve nécessite d'établir préalablement une borne inférieure sur la dimension des représentations non-triviales des groupes finis $SL_k(\mathbb{Z}/(p^n\mathbb{Z}))$ et $Sp_{2k}(\mathbb{Z}/(p^n\mathbb{Z}))$. Notre théoréme prolonge le travail de Landazuri et Seitz, qui considérent le degré minimal des représentations pour les groupes de Chevalley sur les corps finis, tout en offrant une preuve plus simple que la leur. La seconde partie de la thése à trait à la théorie algébrique des nombres. Un polynome monogéne $f$ est un polynome unitaire irréductible à coefficients entiers qui endengre un corps de nombres monogéne. Pour un nombre premier $q$ donné, nous allons montrer, en utilisant le théoréme de densité de Tchebotariov, que la densité des nombres premiers $p$ tels que $t^q -p$ soit monogéne est supérieure ou égale à $(q-1)/q$. Nous allons également démontrer que, quand $q=3$, la densité des nombres premiers $p$ tels que $\mathbb{Q}(\sqrt[3]{p})$ soit non monogéne est supérieure ou égale à $1/9$.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let 'epsilon' be a class of event. Conditionally Expected Utility decision makers are decision makers whose conditional preferences ≿E, E є 'epsilon', satisfy the axioms of Subjective Expected Utility theory (SEU). We extend the notion of unconditional preference that is conditionally EU to unconditional preferences that are not necessarily SEU. We give a representation theorem for a class of such preferences, and show that they are Invariant Bi-separable in the sense of Ghirardato et al.[7]. Then, we consider the special case where the unconditional preference is itself SEU, and compare our results with those of Fishburn [6].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les données comptées (count data) possèdent des distributions ayant des caractéristiques particulières comme la non-normalité, l’hétérogénéité des variances ainsi qu’un nombre important de zéros. Il est donc nécessaire d’utiliser les modèles appropriés afin d’obtenir des résultats non biaisés. Ce mémoire compare quatre modèles d’analyse pouvant être utilisés pour les données comptées : le modèle de Poisson, le modèle binomial négatif, le modèle de Poisson avec inflation du zéro et le modèle binomial négatif avec inflation du zéro. À des fins de comparaisons, la prédiction de la proportion du zéro, la confirmation ou l’infirmation des différentes hypothèses ainsi que la prédiction des moyennes furent utilisées afin de déterminer l’adéquation des différents modèles. Pour ce faire, le nombre d’arrestations des membres de gangs de rue sur le territoire de Montréal fut utilisé pour la période de 2005 à 2007. L’échantillon est composé de 470 hommes, âgés de 18 à 59 ans. Au terme des analyses, le modèle le plus adéquat est le modèle binomial négatif puisque celui-ci produit des résultats significatifs, s’adapte bien aux données observées et produit une proportion de zéro très similaire à celle observée.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le problème de l’extrême pauvreté dans le Tiers-monde n’est pas d’abord une question économique. Il est avant tout politique parce qu’il est la conséquence directe des choix de société et de l’organisation du pouvoir au niveau des États et des diverses instances de la communauté internationale. Le politique a pour objet la conquête du pouvoir et la répartition des richesses à grande échelle. Il s’agit aussi d’un problème moral parce que les options prises collectivement par les peuples et le concert des nations ne s’orientent pas toujours vers la vertu de justice et l’égalité de chances pour tous. Extrême pauvreté et justice globale forment un binôme qui nous ramène donc au cœur de la philosophie politique et morale. Après la Seconde guerre mondiale, la philosophie politique a élargi ses horizons. Elle réfléchit davantage à l’exercice du pouvoir sur la scène internationale et la distribution des richesses au niveau mondial. Le phénomène de la mondialisation économique crée une dépendance mutuelle et d’importantes influences multilatérales entre les États. Plus que par le passé, l’autarcie n’est guère envisageable. Le dogme de la souveraineté intangible des États, issu du Traité de Westphalie au XVIIe siècle, s’avère de plus en plus caduque au regard des enjeux communs auxquels l’humanité fait actuellement face. D’où la nécessité d’une redéfinition du sens des souverainetés nationales et d’une fondation des droits cosmopolitiques pour chaque individu de la planète. Voilà pourquoi le binôme extrême pauvreté/justice globale nécessite une réflexion philosophique sur le concept de la responsabilité qui s’étend non seulement sur la sphère nationale, mais aussi sur une large amplitude cosmopolitique. L’expression « pays du Tiers-monde » peut sembler archaïque, péjorative et humiliante. Cependant, mieux que celles de « pays sous-développés » ou « pays en voie de développement », elle rend compte, sans euphémisme, de la réalité crue, brute et peu élégante de la misère politique et économique qui y sévit. Bien qu’elle semble désuète, elle délimite assez clairement le domaine de définition conceptuel et géographique de notre champ d’investigation philosophique. Elle désigne l’ensemble des pays qui sont exclus de la richesse économique répartie entre les nations. Étant donné que le pouvoir économique va généralement avec le pouvoir politique, cet ensemble est aussi écarté des centres décisionnels majeurs. Caractérisée par une pauvreté extrême, la réalité tiers-mondiste nécessité une analyse minutieuse des causes de cette marginalisation économique et politique à outrance. Une typologie de la notion de responsabilité en offre une figure conceptuelle avec une géométrie de six angles : la causalité, la moralité, la capacité, la communauté, le résultat et la solidarité, comme fondements de la réparation. Ces aspects sous lesquels la responsabilité est étudiée, sont chapeautés par des doctrines philosophiques de types conséquentialiste, utilitariste, déontologique et téléologique. La typologie de la responsabilité donne lieu à plusieurs solutions : aider par philanthropie à sauver des vies humaines ; établir et assigner des responsabilités afin que les torts passés et présents soient réparés aussi bien au niveau national qu’international ; promouvoir l’obligation de protéger dans un contexte international sain qui prenne en considération le devoir négatif de ne pas nuire aux plus défavorisés de la planète ; institutionnaliser des règles transfrontalières de justice ainsi que des droits cosmopolitiques. Enfin, nous entendrons par omniresponsabilité la responsabilité de tous vis-à-vis de ceux qui subissent les affres de l’extrême pauvreté dans le Tiers-monde. Loin d’être un concept-valise fourre-tout, c’est un ensemble de responsabilités partagées par des acteurs identifiables de la scène mondiale, en vue de la coréparation due aux victimes de l’injustice globale. Elle vise un telos : l’épanouissement du bien-être du citoyen du monde.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La surveillance de l’influenza s’appuie sur un large spectre de données, dont les données de surveillance syndromique provenant des salles d’urgences. De plus en plus de variables sont enregistrées dans les dossiers électroniques des urgences et mises à la disposition des équipes de surveillance. L’objectif principal de ce mémoire est d’évaluer l’utilité potentielle de l’âge, de la catégorie de triage et de l’orientation au départ de l’urgence pour améliorer la surveillance de la morbidité liée aux cas sévères d’influenza. Les données d’un sous-ensemble des hôpitaux de Montréal ont été utilisées, d’avril 2006 à janvier 2011. Les hospitalisations avec diagnostic de pneumonie ou influenza ont été utilisées comme mesure de la morbidité liée aux cas sévères d’influenza, et ont été modélisées par régression binomiale négative, en tenant compte des tendances séculaires et saisonnières. En comparaison avec les visites avec syndrome d’allure grippale (SAG) totales, les visites avec SAG stratifiées par âge, par catégorie de triage et par orientation de départ ont amélioré le modèle prédictif des hospitalisations avec pneumonie ou influenza. Avant d’intégrer ces variables dans le système de surveillance de Montréal, des étapes additionnelles sont suggérées, incluant l’optimisation de la définition du syndrome d’allure grippale à utiliser, la confirmation de la valeur de ces prédicteurs avec de nouvelles données et l’évaluation de leur utilité pratique.