972 resultados para Bayesian Modelling
Resumo:
Aim Estimate the prevalence of cannabis dependence and its contribution to the global burden of disease. Methods Systematic reviews of epidemiological data on cannabis dependence (1990-2008) were conducted in line with PRISMA and meta-analysis of Observational Studies in Epidemiology (MOOSE) guidelines. Culling and data extraction followed protocols, with cross-checking and consistency checks. DisMod-MR, the latest version of generic disease modelling system, redesigned as a Bayesian meta-regression tool, imputed prevalence by age, year and sex for 187 countries and 21 regions. The disability weight associated with cannabis dependence was estimated through population surveys and multiplied by prevalence data to calculate the years of life lived with disability (YLDs) and disability-adjusted life years (DALYs). YLDs and DALYs attributed to regular cannabis use as a risk factor for schizophrenia were also estimated. Results There were an estimated 13.1 million cannabis dependent people globally in 2010 (point prevalence0.19% (95% uncertainty: 0.17-0.21%)). Prevalence peaked between 20-24 yrs, was higher in males (0.23% (0.2-0.27%)) than females (0.14% (0.12-0.16%)) and in high income regions. Cannabis dependence accounted for 2 million DALYs globally (0.08%; 0.05-0.12%) in 2010; a 22% increase in crude DALYs since 1990 largely due to population growth. Countries with statistically higher age-standardised DALY rates included the United States, Canada, Australia, New Zealand and Western European countries such as the United Kingdom; those with lower DALY rates were from Sub-Saharan Africa-West and Latin America. Regular cannabis use as a risk factor for schizophrenia accounted for an estimated 7,000 DALYs globally. Conclusion Cannabis dependence is a disorder primarily experienced by young adults, especially in higher income countries. It has not been shown to increase mortality as opioid and other forms of illicit drug dependence do. Our estimates suggest that cannabis use as a risk factor for schizophrenia is not a major contributor to population-level disease burden.
Resumo:
Bridge girder bearings rest on pedestals to transfer the loading safely to the pier headstock. In spite of the existence of industry guidelines, due to construction complexities, such guidelines are often overlooked. Further, there is paucity of research on the performance of pedestals, although their failure could cause exorbitant maintenance costs. Although reinforced concrete pedestals are recommended in the industry design guidelines, unreinforced concrete and/ or epoxy glue pedestals are provided due to construction issues; such pedestals fail within a very short period of service. With a view to understanding the response of pedestals subject to monotonic loading, a three-dimensional nonlinear explicit finite element micro-model of unreinforced and reinforced concrete pedestals has been developed. Contact and material nonlinearity have been accounted for in the model. It is shown that the unreinforced concrete pedestals suffer from localised edge stress singularities, the failure of which was comparable to those in the field. The reinforced concrete pedestals, on the other hand, distribute the loading without edge stress singularity, again conforming to the field experience.
Resumo:
We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy. We present a systematic, practical approach to developing risk prediction systems, suitable for use with large databases of medical information. An important part of this approach is a novel feature selection algorithm which uses the area under the receiver operating characteristic (ROC) curve to measure the expected discriminative power of different sets of predictor variables. We describe this algorithm and use it to select variables to predict risk of a specific adverse pregnancy outcome: failure to progress in labour. Neural network, logistic regression and hierarchical Bayesian risk prediction models are constructed, all of which achieve close to the limit of performance attainable on this prediction task. We show that better prediction performance requires more discriminative clinical information rather than improved modelling techniques. It is also shown that better diagnostic criteria in clinical records would greatly assist the development of systems to predict risk in pregnancy.
Resumo:
Study region The Galilee and Eromanga basins are located in central Queensland, Australia. Both basins are components of the Great Artesian Basin which host some of the most significant groundwater resources in Australia. Study focus This study evaluates the influence of regional faults on groundwater flow in an aquifer/aquitard interbedded succession that form one of the largest Artesian Basins in the world. In order to assess the significance of regional faults as potential barriers or conduits to groundwater flow, vertical displacements of the major aquifers and aquitards were studied at each major fault and the general hydraulic relationship of units that are juxtaposed by the faults were considered. A three-dimensional (3D) geological model of the Galilee and Eromanga basins was developed based on integration of well log data, seismic surfaces, surface geology and elevation data. Geological structures were mapped in detail and major faults were characterised. New hydrological insights for the region Major faults that have been described in previous studies have been confirmed within the 3D geological model domain and a preliminary assessment of their hydraulic significance has been conducted. Previously unknown faults such as the Thomson River Fault (herein named) have also been identified in this study.