977 resultados para Barium Oxides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Paleocene - Eocene thermal maximum (PETM) is one of the best known examples of a transient climate perturbation, associated with a brief, but intense, interval of global warming and a massive perturbation of the global carbon cycle from injection of isotopically light carbon into the ocean-atmosphere system. One key to quantifying the mass of carbon released, identifying the source(s), and understanding the ultimate fate of this carbon is to develop high-resolution age models. Two independent strategies have been employed, cycle stratigraphy and analysis of extraterrestrial Helium (HeET), both of which were first tested on Ocean Drilling Program (ODP) Site 690. Both methods are in agreement for the onset of the PETM and initial recovery, or the clay layer ("main body"), but seem to differ in the final recovery phase of the event above the clay layer, where the carbonate contents rise and carbon isotope values return toward background values. Here we present a state-of-the-art age model for the PETM derived from a new orbital chronology developed with cycle stratigraphic records from sites drilled during ODP Leg 208 (Walvis Ridge, Southeastern Atlantic) integrated with published records from Site 690 (Weddell Sea, Southern Ocean, ODP Leg 113). During Leg 208, five Paleocene - Eocene (P-E) boundary sections (Sites 1262 to 1267) were recovered in multiple holes over a depth transect of more than 2200 m at the Walvis Ridge yielding the first stratigraphically complete P-E deep-sea sequence with moderate to relatively high sedimentation rates (1 to 3 cm/kyr). A detailed chronology was developed with non-destructive X-ray fluorescence (XRF) core scanning records on the scale of precession cycles, with a total duration of the PETM now estimated to be ~ 170 kyr. The revised cycle stratigraphic record confirms original estimates for the duration of the onset and initial recovery, but suggests a new duration for the final recovery that is intermediate to the previous estimates by cycle stratigraphy and HeET.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trace element concentrations of altered basaltic glass shards (layer silicates) and zeolites in volcaniclastic sediments drilled in the volcanic apron northeast of Gran Canaria during Ocean Drilling Program (ODP) leg 157 document variable element mobilities during low-temperature alteration processes in a marine environment. Clay minerals (saponite, montmorillonite, smectite) replacing volcanic glass particles are enriched in transition metals and rare earth elements (REE). The degree of retention of REE within the alteration products of the basaltic glass is correlated with the field strength of the cations. The high field-strength elements are preferentially retained or enriched in the alteration products by sorption through clay minerals. Most trace elements are enriched in a boundary layer close to the interface mineral-altered glass. This boundary layer has a key function for the physico-chemical conditions of the subsequent alteration process by providing a large reactive surface and by lowering the fluid permeability. The release of most elements is buffered by incorporation into secondary precipitates (sodium-rich zeolites, phillipsite, Fe- and Mn-oxides) as shown by calculated distribution coefficients between altered glasses and authigenic minerals. Chemical fluxes change from an open to a closed system behavior during prograde low-temperature alteration of volcaniclastic sediments with no significant trace metal flux from the sediment to the water column.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At Sites 548 and 550 of DSDP Leg 80 several condensed sedimentary sections contain various types of polymetallic crusts. The relationships between mineralogic and geochemical data in the sections have been studied in the context of the biostratigraphic and sedimentologic results. The diagenetic evolution during periods of low accumulation rate varies according to depth and sedimentary environment. At Site 548 on the continental margin, the phosphatic and manganiferous crusts are similar to those related to upwelling influences before Late Cretaceous deposition. At Site 550 the upper Paleocene cherts, deposited directly on oceanic crust, are overlain by pelagic brown clays containing diagenetic manganiferous concretions characterized by very high Sr and Ba contents. The origin of these small nodules is probably related to the authigenesis of fecal pellets. The upper Eocene indurated section is made up of authigenic zeolites, clays, and Fe-Mn phases and is similar to the volcanic-sedimentary deposits described in deep basins and seamounts of the Pacific. These crusts and a polynucleated nodule within the overlying sediments have geochemical characteristics (high Ni, Co, and Cu contents) similar to those formed in the deep ocean under volcanic influences during periods of low sedimentation rates or sedimentary hiatuses. Volcaniclastic material is ubiquitous and peculiarly abundant in Eocene sections and can be related to the volcanic formation of Iceland in the North Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical analyses have been performed on sediment samples collected during Ocean Drilling Program Leg 178 from the continental rise and outer continental shelf of the Antarctic Peninsula. A suite of 21 trace elements was measured by neutron activation analysis in 39 sediment samples, and major element oxides were determined in 67 samples by electron microprobe analyses of fused glass beads. These geochemical data, combined with the X-ray diffraction and X-ray fluorescence data from shipboard analyses, provide a reasonable estimate of the mineral and chemical composition of sediments deposited along the western margin of the Antarctic Peninsula.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We provide new insights into the geochemistry of serpentinites from mid-ocean ridges (Mid-Atlantic Ridge and Hess Deep), passive margins (Iberia Abyssal Plain and Newfoundland) and fore-arcs (Mariana and Guatemala) based on bulk-rock and in situ mineral major and trace element compositional data collected on drill cores from the Deep Sea Drilling Project and Ocean Drilling Program. These data are important for constraining the serpentinite-hosted trace element inventory of subduction zones. Bulk serpentinites show up to several orders of magnitude enrichments in Cl, B, Sr, U, Sb, Pb, Rb, Cs and Li relative to elements of similar compatibility during mantle melting, which correspond to the highest primitive mantle-normalized B/Nb, B/Th, U/Th, Sb/Ce, Sr/Nd and Li/Y among subducted lithologies of the oceanic lithosphere (serpentinites, sediments and altered igneous oceanic crust). Among the elements showing relative enrichment, Cl and B are by far the most abundant with bulk concentrations mostly above 1000 µg/g and 30 µg/g, respectively. All other trace elements showing relative enrichments are generally present in low concentrations (µg/g level), except Sr in carbonate-bearing serpentinites (thousands of µg/g). In situ data indicate that concentrations of Cl, B, Sr, U, Sb, Rb and Cs are, and that of Li can be, increased by serpentinization. These elements are largely hosted in serpentine (lizardite and chrysotile, but not antigorite). Aragonite precipitation leads to significant enrichments in Sr, U and B, whereas calcite is important only as an Sr host. Commonly observed brucite is trace element-poor. The overall enrichment patterns are comparable among serpentinites from mid-ocean ridges, passive margins and fore-arcs, whereas the extents of enrichments are often specific to the geodynamic setting. Variability in relative trace element enrichments within a specific setting (and locality) can be several orders of magnitude. Mid-ocean ridge serpentinites often show pronounced bulk-rock U enrichment in addition to ubiquitous Cl, B and Sr enrichment. They also exhibit positive Eu anomalies on chondrite-normalized rare earth element plots. Passive margin serpentinites tend to have higher overall incompatible trace element contents than mid-ocean ridge and fore-arc serpentinites and show the highest B enrichment among all the studied serpentinites. Fore-arc serpentinites are characterized by low overall trace element contents and show the lowest Cl, but the highest Rb, Cs and Sr enrichments. Based on our data, subducted dehydrating serpentinites are likely to release fluids with high B/Nb, B/Th, U/Th, Sb/Ce and Sr/Nd, rendering them one of the potential sources of some of the characteristic trace element fingerprints of arc magmas (e.g. high B/Nb, high Sr/Nd, high Sb/Ce). However, although serpentinites are a substantial part of global subduction zone chemical cycling, owing to their low overall trace element contents (except for B and Cl) their geochemical imprint on arc magma sources (apart from addition of H2O, B and Cl) can be masked considerably by the trace element signal from subducted crustal components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Zambezi deep-sea fan, the largest of its kind along the east African continental margin, is poorly studied to date, despite its potential to record marine and terrestrial climate signals in the southwest Indian Ocean. Therefore, gravity core GeoB 9309-1, retrieved from 1219 m water depth, was investigated for various geophysical (magnetic susceptibility, porosity, colour reflectance) and geochemical (pore water and sediment geochemistry, Fe and P speciation) properties. Onboard and onshore data documented a sulphate/methane transition (SMT) zone at ~ 450-530 cm sediment depth, where the simultaneous consumption of pore water sulphate and methane liberates hydrogen sulphide and bi-carbonate into the pore space. This leads to characteristic changes in the sediment and pore water chemistry, as the reduction of primary Fe (oxyhydr)oxides, the precipitation of Fe sulphides, and the mobilization of Fe (oxyhydr)oxide-bound P. These chemical processes also lead to a marked decrease in magnetic susceptibility. Below the SMT, we find a reduction of porosity, possibly due to pore space cementation by authigenic minerals. Formation of the observed geochemical, magnetic and mineralogical patterns requires a fixation of the SMT at this distinct sediment depth for a considerable time-which we calculated to be ~ 10 000 years assuming steady-state conditions-following a period of rapid upward migration towards this interval. We postulate that the worldwide sea-level rise at the last glacial/interglacial transition (~ 10 000 years B.P.) most probably caused the fixation of the SMT at its present position, through drastically reduced sediment delivery to the deep-sea fan. In addition, we report an internal redistribution of P occurring around the SMT, closely linked to the (de)coupling of sedimentary Fe and P, and leaving a characteristic pattern in the solid P record. By phosphate re-adsorption onto Fe (oxyhydr)oxides above, and formation of authigenic P minerals (e.g. vivianite) below the SMT, deep-sea fan deposits may potentially act as long-term sinks for P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissolved barium has been shown to have the potential to distinguish Eurasian from North American (NA) river runoff. As part of the ARK-XXII/2 Polarstern expedition in summer 2007, Ba was analyzed in the Barents, Kara, Laptev seas, and the Eurasian Basins as well as the Makarov Basin up to the Alpha and Mendeleyev Ridges. By combining salinity, d18O and initial phosphate corrected for mineralization with oxygen (PO4*) or N/P ratios we identified the water mass fractions of meteoric water, sea ice meltwater, and marine waters of Atlantic as well as Pacific origin in the upper water column. In all basins inside the lower halocline layer and the Arctic intermediate waters we find Ba concentrations close to those of the Fram Strait branch of the lower halocline (41-45 nM), reflecting the composition of the incoming Atlantic water. A layer of upper halocline water (UHW) with higher Ba concentrations (45-55 nM) is identified in the Makarov Basin. Atop of the UHW, the Surface Mixed Layer (SML), including the summer and winter mixed layers, has high concentrations of Ba (58-67 nM). In the SML of the investigated area of the central Arctic the meteoric fraction can be identified by assuming a conservative behavior of Ba to be primarily of Eurasian river origin. However, in productive coastal regions biological removal compromises the use of Ba to distinguish between Eurasian and NA rivers. As a consequence, the NA river water fraction is underestimated in productive surface waters or waters that have passed a productive region, whereas this fraction is overestimated in subsurface waters containing remineralised Ba, particularly when these waters have passed productive shelf regions. Especially in the Laptev Sea and small regions in the Barents Sea, Ba concentrations are low in surface waters. In the Laptev Sea exceptionally high Ba concentrations in shelf bottom waters indicate that Ba is removed from surface waters to deep waters by biological activity enhanced by increasing ice-free conditions as well as by scavenging by organic matter of terrestrial origin. We interpret high Ba concentrations in the UHW of the Makarov Basin to result from enrichment by remineralisation in bottom waters on the shelf of the Chukchi Sea and therefore the calculated NA runoff is an artefact. We conclude that no NA runoff can be demonstrated unequivocally anywhere during our expedition with the set of tracers considered here. Small contributions of NA runoff may have been masked by Ba depletion and could only be resolved by supportive tracers on the uptake history. We thus suggest that Ba has to be used with care as it can put limits but not yield quantitative water mass distributions. Only if the extra Ba inputs exceed the cumulative biological uptake the signal can be unequivocally attributed to NA runoff.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ocean Drilling Program (ODP) Site 1151 (Sacks, Suyehiro, Acton, et al., 2000, doi:10.2973/odp.proc.ir.186.2000) is located in an area where the surface water mass is influenced by both the Kuroshio and Oyashio Currents. The site also receives a relatively high flux of detrital materials from riverine input from Honsyu Island and eolian input from Central and East Asia. We analyzed alkenones and alkenoates in the sediments to reconstruct alkenone unsaturation index (Uk'37)-based sea-surface temperature (SST), total organic carbon, and total nitrogen to estimate the terrigenous contribution by the C/N ratio during the last glacial-interglacial cycle. The major elements were also analyzed to examine the variation in terrigenous composition.