955 resultados para BIS(IMINO)PYRIDYL IRON(II)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Frühgeschichtliche Funde von Haustieren sind im norddeutschen Raum recht selten, wie eine Zusammenstellung der bisher erschienenen Literatur zeigt. Gehl (1930) nahm eine erste Bearbeitung stein- und eisenzeitlicher Hunde vor, die eine recht große Übereinstimmung zu gleichaltrigen Tieren Dänemarks aufwiesen. Studien neolithischer Tierknochen aus dem Satrupholmer Moor von Herre (1949) erbrachten ihre besondere Wichtigkeit für Fragen der Abstammung des Hausrindes. Die Tierreste von Haithabu, die z. Z. im Institut für Haustierkunde der Universität Kiel bearbeitet werden, entstammen Schichten des 8. bis 14. Jahrhunderts. Gleichaltrige Reste aus dem mittelalterlichen Hamburg wurden von Herre (1950) eingehend analysiert. Diese kurze Übersicht läßt deutlich werden, daß aus den Jahrhunderten um Christi Geburt aus unserem Raum nichts bekannt ist. Es war daher außerordentlich erfreulich, daß bei Grabungen in der Nähe von Barsbek 544 Knochenreste aus jener Zeit geborgen wurden. Sie helfen somit, eine große Lücke in unserem Wissen über die damalige Haustierwelt in Norddeutschland zu schließen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thirteen sediment samples, including calcareous ooze, sandy clay, volcanic sand, gravel, and volcanic breccia, from Ocean Drilling Program (ODP) Sites 732B, 734B, 734G and Conrad Cruise 27-9, Station 17, were examined. Contents of major and trace elements were determined using XRF or ICP (on samples <0.5 g). Determinations of rare earth elements (REE) were performed using ICP-MS. Mineralogy was determined using XRD. On the basis of the samples studied, the sediments accumulating in the Atlantis II Fracture Zone are characterized by generally high MgO, Cr, and Ni contents compared with other deep-sea sediments. A variety of sources are reflected in the mineralogy and geochemistry of these sediments. Serpentine, brucite, magnetite, and high MgO, Cr, and Ni contents indicate derivation from ultramafic basement. The occurrence of albite, analcime, primary mafic minerals, and smectite/chlorite in some samples, coupled with high SiO2, Al2O3, TiO2, Fe2O3, V, and Y indicate contribution from basaltic basement. A third major sediment source is characterized as biogenic material and is reflected primarily in the presence of carbonate minerals, and high CaO, Sr, Pb, and Zn in certain samples. Kaolinite, illite, quartz, and some chlorite are most likely derived from continental areas or other parts of the ocean by long-distance sediment transport in surface or other ocean currents. Proportions of source materials in the sediments reflect the thickness of the sediment cover, slope of the seafloor, and the nature of and proximity to basement lithologies. REE values are low compared to other deep-sea sediments and indicate no evidence of hydrothermal activity in the Atlantis II Fracture Zone sediments. This is supported by major- and trace-element data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution and speciation of iron was determined along a transect in the eastern Atlantic sector (6°E) of the Southern Ocean during a collaborative Scandinavian/South African Antarctic cruise conducted in late austral summer (December 1997/January 1998). Elevated concentrations of dissolved iron (>0.4 nM) were found at 60°S in the vicinity of the Spring Ice Edge (SIE) in tandem with a phytoplankton bloom, chiefly dominated by Phaeocystis sp. This bloom had developed rapidly after the loss of the seasonal sea ice cover. The iron that fuelled this bloom was mostly likely derived from sea ice melt. In the Winter Ice Edge (WIE), around 55°S, dissolved iron concentrations were low (<0.2 nM) and corresponded to lower biological productivity, biomass. In the Antarctic Polar Front, at approximately 50°S, a vertical profile of dissolved iron showed low concentrations (<0.2 nM); however, a surface survey showed higher concentrations (1-3 nM), and considerable patchiness in this dynamic frontal region. The chemical speciation of iron was dominated by organic complexation throughout the study region. Organic iron-complexing ligands ([L]) ranged from 0.9 to 3.0 nM Fe equivalents, with complex stability log K'(FeL) = 21.4-23.5. Estimated concentrations of inorganic iron (Fe') ranged from 0.03 to 0.79 pM, with the highest values found in the Phaeocystis bloom in the SIE. A vertical profile of iron-complexing ligands in the WIE showed a maximum consistent with a biological source for ligand production and near surface minimum possibly consistent with loss via photodecomposition. This work further confirms the role iron that has in the Southern Ocean in limiting primary productivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic complexation of dissolved iron (dFe) was investigated in the Atlantic sector of the Southern Ocean in order to understand the distribution of Fe over the whole water column. The total concentration of dissolved organic ligands ([Lt]) measured by voltammetry ranged between 0.54 and 1.84 nEq of M Fe whereas the conditional binding strength (K') ranged between 10**21.4 and 10**22.8. For the first time, trends in Fe-organic complexation were observed in an ocean basin by examining the ratio ([Lt]/[dFe]), defined as the organic ligand concentration divided by the dissolved Fe concentration. The [Lt]/[dFe] ratio indicates the saturation state of the natural ligands with Fe; a ratio near 1 means saturation of the ligands leading to precipitation of Fe. Reversely, high ratios mean Fe depletion and show a high potential for Fe solubilisation. In surface waters where phytoplankton is present low dissolved Fe and high variable ligand concentrations were found. Here the [Lt]/[dFe] ratio was on average 4.4. It was especially high (5.6-26.7) in the HNLC (High Nutrient, Low Chlorophyll) regions, where Fe was depleted. The [Lt]/[dFe] ratio decreased with depth due to increasing dissolved Fe concentrations and became constant below 450 m, indicating a steady state between ligand and Fe. Relatively low [Lt]/[dFe] ratios (between 1.1 and 2.7) existed in deep water north of the Southern Boundary, facilitating Fe precipitation. The [Lt]/[dFe] ratio increased southwards from the Southern Boundary on the Zero Meridian and from east to west in the Weddell Gyre due to changes both in ligand characteristics and in dissolved iron concentration. High [Lt]/[dFe] ratio expresses Fe depletion versus ligand production in the surface. The decrease with depth reflects the increase of [dFe] which favours scavenging and (co-) precipitation, whereas a horizontal increase in the deep waters results from an increasing distance from Fe sources. This increase in the [Lt]/[dFe] ratio at depth shows the very resistant nature of the dissolved organic ligands.