946 resultados para Atrina vexillum, shell height


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new genus Abyssogena is established for A. phaseoliformis (Métivier, Okutani & Ohta, 1986) and A. kaikoi (Okutani & Métivier, 1986), which were previously assigned to the genus Calyptogena Dall, 1891, and also for two new species, A. southwardae and A. novacula. The most characteristic features of Abyssogena are an elongate shell up to about 280 mm in length; a pallial line starting from the ventral margin of the anterior adductor scar; secondary pallial attachment scars developed dorsal to the pallial line; radially arranged hinge teeth with a reduced anterior cardinal tooth in the right valve; and presence of an inner ctenidial demibranch only. Abyssogena occurs in deep water from 2,985 to 6,400 m and is distributed in the Pacific and Atlantic Oceans at cold seeps along continental margins and hydrothermal vents at mid-oceanic ridges. Some species have a remarkably wide geographic distribution; A. southwardae is present throughout the Atlantic and A. phaseoliformis is present in Japan, Kuril-Kamchatka, as well as Aleutian Trenches. No fossils of Abyssogena are known.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine organisms have to cope with increasing CO2 partial pressures and decreasing pH in the oceans. We elucidated the impacts of an 8-week acclimation period to four seawater pCO2 treatments (39, 113, 243 and 405 Pa/385, 1,120, 2,400 and 4,000 µatm) on mantle gene expression patterns in the blue mussel Mytilus edulis from the Baltic Sea. Based on the M. edulis mantle tissue transcriptome, the expression of several genes involved in metabolism, calcification and stress responses was assessed in the outer (marginal and pallial zone) and the inner mantle tissues (central zone) using quantitative real-time PCR. The expression of genes involved in energy and protein metabolism (F-ATPase, hexokinase and elongation factor alpha) was strongly affected by acclimation to moderately elevated CO2 partial pressures. Expression of a chitinase, potentially important for the calcification process, was strongly depressed (maximum ninefold), correlating with a linear decrease in shell growth observed in the experimental animals. Interestingly, shell matrix protein candidate genes were less affected by CO2 in both tissues. A compensatory process toward enhanced shell protection is indicated by a massive increase in the expression of tyrosinase, a gene involved in periostracum formation (maximum 220-fold). Using correlation matrices and a force-directed layout network graph, we were able to uncover possible underlying regulatory networks and the connections between different pathways, thereby providing a molecular basis of observed changes in animal physiology in response to ocean acidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing atmospheric carbon dioxide levels are causing ocean acidification, compromising the ability of some marine organisms to build and maintain support structures as the equilibrium state of inorganic carbon moves away from calcium carbonate. Few marine organisms tolerate conditions where ocean pH falls significantly below today's value of about 8.1 and aragonite and calcite saturation values below 1. Here we report dense clusters of the vent mussel B. brevior in natural conditions of pH values between 5.36 and 7.29 on northwest Eifuku volcano, Mariana arc, where liquid carbon dioxide and hydrogen sulphide emerge in a hydrothermal setting. We find that both shell thickness and daily growth increments in shells from northwest Eifuku are only about half those recorded from mussels living in water with pH>7.8. Low pH may therefore also be implicated in metabolic impairment. We identify four-decade-old mussels, but suggest that the mussels can survive for so long only if their protective shell covering remains intact: crabs that could expose the underlying calcium carbonate to dissolution are absent from this setting. The mussels' ability to precipitate shells in such low-pH conditions is remarkable. Nevertheless, the vulnerability of molluscs to predators is likely to increase in a future ocean with low pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ongoing process of ocean acidification already affects marine life and, according to the concept of oxygen- and capacity limitation of thermal tolerance (OCLTT), these effects may be exacerbated at the boarders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4°C (winter) or to 10°C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold (4°C) exposed groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55% under normocapnia to 90% under hypercapnia. We therefore excluded the 4°C groups from further experimentation. Scallops at 10°C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normo- and hypercapnia exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared to normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal's performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results from sediment trap experiments conducted in the seasonal upwelling area off south Java from November 2000 until July 2003 revealed significant monsoon-, El Niño-Southern Oscillation-, and Indian Ocean Dipole-induced seasonal and interannual variations in flux and shell geochemistry of planktonic foraminifera. Surface net primary production rates together with total and species-specific planktonic foraminiferal flux rates were highest during the SE monsoon-induced coastal upwelling period from July to October, with three species Globigerina bulloides, Neogloboquadrina pachyderma dex., and Globigerinita glutinata contributing to 40% of the total foraminiferal flux. Shell stable oxygen isotopes (d18O) and Mg/Ca data of Globigerinoides ruber sensu stricto (s.s.), G. ruber sensu lato (s.l.), Neogloboquadrina dutertrei, Pulleniatina obliquiloculata, and Globorotalia menardii in the sediment trap time series recorded surface and subsurface conditions. We infer habitats of 0-30 m for G. ruber at the mixed layer depth, 60-80 m (60-90 m) for P. obliquiloculata (N. dutertrei) at the upper thermocline depth, and 90-110 m (100-150 m) for G. menardii in the 355-500 mm (>500 µm) size fraction corresponding to the (lower) thermocline depth in the study area. Shell Mg/Ca ratio of G. ruber (s.l. and s.s.) reveals an exponential relationship with temperature that agrees with published relationships particularly with the Anand et al. (2003) equations. Flux-weighted foraminiferal data in sediment trap are consistent with average values in surface sediment samples off SW Indonesia. This consistency confirms the excellent potential of these proxies for reconstructing past environmental conditions in this part of the ocean realm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Larvae of the Mediterranean pteropod Cavolinia inflexa were maintained at controlled pHT values of 8.1, 7.82 and 7.51, equivalent respectively to pCO2 levels of 380, 857 and 1713 µatm. At pHT 7.82 larvae exhibited malformations and lower shell growth, compared to the control condition. At pHT 7.51 the larvae did not make shells but were viable and showed a normal development. However, smaller shells or no shells will have both ecological (food web) and biogeochemical (export of carbon and carbonate) consequences. These results confirm that 1pteropods, as well as the species dependent upon them as a food resource, will be severely impacted by ocean acidification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mytilus edulis were cultured for 3 months under six different seawater pCO2 levels ranging from 380 to 4000 µatm. Specimen were taken from Kiel Fjord (Western Baltic Sea, Germany) which is a habitat with high and variable seawater pCO2 and related shifts in carbonate system speciation (e.g., low pH and low CaCO3 saturation state). Hemolymph (HL) and extrapallial fluid (EPF) samples were analyzed for pH and total dissolved inorganic carbon (CT) to calculate pCO2 and [HCO3]. A second experiment was conducted for 2 months with three different pCO2 levels (380, 1400 and 4000 µatm). Boron isotopes (delta11B) were investigated by LA-MC-ICP-MS (Laser Ablation-Multicollector-Inductively Coupled Plasma-Mass Spectrometry) in shell portions precipitated during experimental treatment time. Additionally, elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF of specimen from the second experiment were measured via ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometry). Extracellular pH was not significantly different in HL and EPF but systematically lower than ambient water pH. This is due to high extracellular pCO2 values, a prerequisite for metabolic CO2 excretion. No accumulation of extracellular [HCO3] was measured. Elemental ratios (B/Ca, Mg/Ca and Sr/Ca) in the EPF increased slightly with pH which is in accordance with increasing growth and calcification rates at higher seawater pH values. Boron isotope ratios were highly variable between different individuals but also within single shells. This corresponds to a high individual variability in fluid B/Ca ratios and may be due to high boron concentrations in the organic parts of the shell. The mean delta11B value shows no trend with pH but appears to represent internal pH (EPF) rather than ambient water pH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to analyse the developmental pathway of skilled and less skilled volleyball players by focusing on the quantity and type of sporting activities, as well as their age and height in comparison to peers in those experiences. Retrospective interviews were conducted to provide a longitudinal and detailed account of sport involvement of 30 skilled and 30 less skilled volleyball players (15 male and 15 female players per group) throughout different developmental stages (stage 1: 8-12 years; stage 2: 13-16 years; stage 3: 17-20 years). Results indicated that the developmental pathway of these volleyball players (i.e. skilled and less skilled) was characterized by an early diversified sport involvement with a greater participation in sport activities during stages 1 and 2. However, skilled players specialized later in volleyball (between age 14 and 15) and performed more hours of volleyball at stage 3 (from 17 years of age onwards). Also, skilled players (male and female) were younger in both the diversified sport activities and volleyball at the later stages of development (i.e. stages 2 and 3), and skilled female players were taller than peers in those activities in the early stages of development (i.e. stages 1 and 2). The present findings suggest early diversification as a feasible pathway to reach expertise in volleyball and highlight the importance of practicing with older peers once specialization in the main sport has occurred. The findings highlight the need for coaches and sport programs to consider different stimuli existing within the training environment (i.e. characteristics of athletes, such as age and height) that influence the quality of practice and contribute to players’ expertise development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Measuring and tracking athletic performance is crucial to an athlete’s development and the countermovement vertical jump is often used to measure athletic performance, particularly lower limb power. The linear power developed in the lower limb is estimated through jump height. However, the relationship between angular power, produced by the joints of the lower limb, and jump height is not well understood. This study examined the contributions of the kinetic value of angular power, and its kinematic component, angular velocity, of the lower limb joints to jump height in the countermovement vertical jump. Kinematic and kinetic data were gathered from twenty varsity-level basketball and volleyball athletes as they performed six maximal effort jumps in four arm swing conditions: no-arm involvement, single-non-dominant arm swing, single-dominant arm swing, and two-arm swing. The displacement of the whole body centre of mass, peak joint powers, peak angular velocity, and locations of the peaks as a percentage of the jump’s takeoff period, were computed. Linear regressions assessed the relationship of the variables to jump height. Results demonstrated that knee peak power (p = 0.001, ß = 0.363, r = 0.363), its location within takeoff period (p = 0.023, ß = -0.256, r = 0.256), and peak knee peak angular velocity (p = 0.005, ß = 0.310, r = 0.310) were moderately linked to increased jump height. Additionally, the location, within the takeoff period, of the peak angular velocities of the hip (p = 0.003, ß = -0.318, r = 0.419) and ankle (p = 0.011, ß = 0.270, r = 0.419) were positively linked to jump height. These results highlight the importance of training the velocity and timing of joint motion beyond traditional power training protocols as well as the importance of further investigation into appropriate testing protocol that is sensitive to the contributions by individual joints in maximal effort jumping.