976 resultados para Assemblage spontané
Resumo:
Thecamoebians were examined from 71 surface sediment samples collected from 21 lakes and ponds in the Greater Toronto Area to (1) elucidate the controls on faunal distribution in modern lake environments; and (2) to consider the utility of thecamoebians in quantitative studies of water quality change. This area was chosen because it includes a high density of kettle and other lakes which are threatened by urban development and where water quality has deteriorated locally as a result of contaminant inputs, particularly nutrients. Fifty-eight samples yielded statistically significant thecamoebian populations. The most diverse faunas (highest Shannon Diversity Index values) were recorded in lakes beyond the limits of urban development, although the faunas of all lakes showed signs of sub-optimal conditions. The assemblages were divided into five clusters using Q-mode cluster analysis, supported by Detrended Correspondence Analysis. Canonical Correspondence Analysis (CCA) was used to examine species-environment relationships and to explain the observed clusterings. Twenty-four measured environmental variables were considered, including water property attributes (e.g., pH, conductivity, dissolved oxygen), substrate characteristics, sediment-based phosphorus (Olsen P) and 11 environmentally available metals. The thecamoebian assemblages showed a strong association with phosphorus, reflecting the eutrophic status of many of the lakes, and locally to elevated conductivity measurements, which appear to reflect road salt inputs associated with winter de-icing operations. Substrate characteristics, total organic carbon and metal contaminants (particularly Cu and Mg) also influenced the faunas of some samples. A series of partial CCAs show that of the measured variables, sedimentary phosphorus has the largest influence on assemblage distribution, explaining 6.98% (P < 0.002) of the total variance. A transfer function was developed for sedimentary phosphorus (Olsen P) using 58 samples from 15 of the studied lakes. The best performing model was based on weighted averaging with inverse deshrinking (WA Inv, r jack 2= 0.33, RMSEP = 102.65 ppm). This model was applied to a small modern thecamoebian dataset from a eutrophic lake in northern Ontario to predict phosphorus and performed satisfactorily. This preliminary study confirms that thecamoebians have considerable potential as quantitative water quality indicators in urbanising regions, particularly in areas influenced by nutrient inputs and road salts.
Resumo:
Studies of invasion scenarios over long time periods are important to refine explanations and predictions of invasion success and impact. We used data from surveys in 1958 and 1999 of the macroinvertebrates of Lough Neagh, Northern Ireland, to assess changes in the distribution of native and introduced amphipods in relation to the wider assemblage. In 1958, the invader G. tigrinus dominated the shoreline fauna, with the native G. d. celticus present in very low numbers, whereas in 1999 the reverse was evident. In both surveys, G. tigrinus was the only amphipod present in the mid-Lough. G. tigrinus thus seems to have become established within L. Neagh, perhaps overshot and then senesced, with the native species re-establishing on the shoreline, with the invader mostly restricted to the deep mid-Lough. The non-amphipod macroinvertebrate assemblage was similar between the two surveys, in terms of Bray-Curtis community similarity, assemblage diversity, dominance and the taxa based ASPT water quality index. However, the mean density of macroinvertebrates (all taxa combined) was lower in 1999 compared to 1958, largely accounted for by a decline in oligochaete numbers. Since Gammarus species may be predators of other macroinvertebrates and influence their distribution and abundance, we investigated this trophic link in staged laboratory encounters. Both G. tigrinus and G. d. celticus preyed on isopods, alderflies, mayflies, chironomids and mysids, however, the native G. d. celticus had a significantly greater predatory impact on isopods and chironomids than did the invader G. tigrinus. While we cannot definitively ascribe cause and effect in the present scenario, we discuss how replacement of one amphipod species by another may have impacts on the wider macroinvertebrate assemblage.
Resumo:
Introduction of the invasive Asian cyprinid fish Pseudorasbora parva into a 0.3 ha pond in England with a fish assemblage that included Cyprinus carpio, Rutilus rutilus and Scardinius erythrophthalmus resulted in their establishment of a numerically dominant population in only 2 years; density estimates exceeded 60 ind. m(-2) and they comprised > 99% of fish present. Stable isotope analysis (SIA) revealed significant trophic overlap between P. parva, R. rutilus and C. carpio, a shift associated with significantly depressed somatic growth in R. rutilus. Despite these changes, fish community composition remained similar between the ponds. Comparison with SIA values collected from an adjacent pond free of P. parva revealed a simplified food web in P. parva presence, but with an apparent trophic position shift for several fishes, including S. erythrophthalmus which appeared to assimilate energy at a higher trophic level, probably through P. parva consumption. The marked isotopic shifts shown in all taxa in the P. parva invaded pond (C-13-enriched, N-15 depleted) were indicative of a shift to a cyanobacteria-dominated phytoplankton community. These findings provide an increased understanding of the ecological consequences of the ongoing P. parva invasion of European freshwater ecosystems.
Resumo:
The rate of species loss is increasing on a global scale and predators are most at risk from human-induced extinction. The effects of losing predators are difficult to predict, even with experimental single species removals, because different combinations of species interact in unpredictable ways. We tested the effects of the loss of groups of common predators on herbivore and algal assemblages in a model benthic marine system. The predator groups were fish, shrimp and crabs. Each group was represented by at least two characteristic species based on data collected at local field sites. We examined the effects of the loss of predators while controlling for the loss of predator biomass. The identity, not the number of predator groups, affected herbivore abundance and assemblage structure. Removing fish led to a large increase in the abundance of dominant herbivores, such as Ampithoids and Caprellids. Predator identity also affected algal assemblage structure. It did not, however, affect total algal mass. Removing fish led to an increase in the final biomass of the least common taxa (red algae) and reduced the mass of the dominant taxa (brown algae). This compensatory shift in the algal assemblage appeared to facilitate the maintenance of a constant total algal biomass. In the absence of fish, shrimp at higher than ambient densities had a similar effect on herbivore abundance, showing that other groups could partially compensate for the loss of dominant predators. Crabs had no effect on herbivore or algal populations, possibly because they were not at carrying capacity in our experimental system. These findings show that contrary to the assumptions of many food web models, predators cannot be classified into a single functional group and their role in food webs depends on their identity and density in 'real' systems and carrying capacities.
Resumo:
Regarding the Real: Cinema, Documentary, and the Visual Arts develops an interdisciplinary approach to documentary film, focusing on its cultural and formal relations to other visual arts, such as animation, assemblage, photography, painting, sculpture, and architecture. The book considers the work of figures whose preferred film language is associative and fragmentary, and for whom the documentary is an endlessly open form, an unstable expressive phenomenon that cannot but interrogate the validity of its own narratives and representational modes. Combining close analysis with cultural history, Regarding the Real calls for a re-assessment of the influence of the modern arts in subverting the structures of realism typically associated with documentary filmmaking.
Resumo:
Beds of nonattached coralline algae (maerl or rhodoliths) are widespread and considered relatively species rich. This habitat is generally found in areas where there is chronic physical disturbance such that maerl thalli are frequently moved. Little is known, however, about how natural disturbance regimes affect the species associated with maerl. This study compared the richness, animal abundance, and algal biomass of maerl-associated species over a two-year period in a wave-disturbed bed and a sheltered maerl bed. Changes in associated species over time were assessed for departures from a neutral model in which the dissimilarity between samples reflects random sampling from a common species pool. Algal biomass and species richness at the wave-exposed site and on stabilized maerl at the sheltered site were reduced at times of higher wind speeds. The changes in species richness were not distinguishable from a neutral model, implying that algal species were added at random to the assemblage as the level of disturbance lessened. Results for animal species were more mixed. Although mobile species were less abundant during windy periods at the exposed site, both neutral and non-neutral patterns were evident in the assemblages. Artificial stabilization of maerl had inconsistent effects on the richness of animals but always resulted in more attached algal species. While the results show that the response of a community to disturbance can be neutral, the domain of neutral changes in communities may be relatively small. Alongside non-neutral responses to natural disturbance, artificial stabilization always resulted in an assemblage that was more distinct than would be expected under random sampling from a common pool. Community responses to stabilization treatments did not consistently follow the predictions of the dynamic equilibrium model, the intermediate disturbance model, or a facilitation model. These inconsistencies may reflect site-specific variation in both the disturbance regime and the adjacent habitats that provide source populations for many of the species found associated with maerl.
Resumo:
Anew species of fossil polyplacophoran from the Danian (Lower Palaeocene) of Denmark is described from over 450 individual disarticulated plates. The polyplacophorans originate from the 'nose-chalk' in the classical Danish locality of Fakse Quarry, an unconsolidated coral limestone in which aragonitic mollusc shells are preserved through transformation into calcite. In plate architecture and sculpture, the new Danish material is similar to Recent Leptochiton spp., but differs in its underdeveloped apophyses and high dorsal elevation (height/width ca. 0.54). Cladistic analysis of 55 original shell characters coded for more than loo Recent and fossil species in the order Lepiclopleurida shows very high resolution of interspecific relationships, but does not consistently recover traditional genera or subgenera. Inter-relationships within the suborder Lepidopleurina are of particular interest as it is often considered the most 'basal' neoloricate lineage. In a local context, the presence of chitons in the faunal assemblage of Fakse contributes evidence of shallow depositional depth for at least some elements of this Palaeocene seabed, a well-studied formation of azooxanthellic coral limestones. This new record for Denmark represents a well-dated and ecologically well-understood fossil chiton with potential value for understanding the radiation of the Neotoricata.
Resumo:
Recent and emerging security policies and practices claim a mutual vulnerability that closely links human insecurity in failed states with the threat to powerful states from illicit flows. This article first examines this ‘emerging orthodoxy’ of transnational security issues that reinforces the securitisation of poverty and the poor. It then subjects this orthodoxy to theoretical and empirical critique. Theoretically it shows that this orthodoxy is formed as a ‘geopolitical imagination’ that associates and stabilises particular views of weak states and illicit flows in a ‘netwar imagination’ by reasserting and reconfiguring traditional assumptions of the spatiality and nature of threats. A final empirical section, focusing on drug production and nuclear smuggling, argues that those assumptions and their assemblage are a partial, incomplete and often self-referential reading of illicit flows.
Resumo:
Mid to high latitude forest ecosystems have undergone several major compositional changes during the Holocene. The temporal and spatial patterns of these vegetation changes hold potential information to their causes and triggers. Here we test the hypothesis that the timing of vegetation change was synchronous on a sub-continental scale, which implies a common trigger or a step-like change in climate parameters. Pollen diagrams from selected European regions were statistically divided into assemblage zones and the temporal pattern of the zone boundaries analysed. The results show that the temporal pattern of vegetation change was significantly different from random. Times of change cluster around8.2, 4.8, 3.7, and 1.2 ka, while times of higher than average stability were found around 2.1 and 5.1 ka.Compositional changes linked to the expansion of Corylus avellana and Alnus glutinosa centre around 10.6 and 9.5 ka, respectively. A climatic trigger initiating these changes may have occurred 0.5 to 1 ka earlier, respectively. The synchronous expansion of C. avellana and A. glutinosa exemplify that dispersal is not necessarily followed by population expansion. The partly synchronous, partly random expansion of A. glutinosa in adjacent European regions exemplifies that sudden synchronous population expansions are not species specific traits but vary regionally.
Resumo:
The molluscan fauna of an intertidal sand beach in Princess Royal Harbour, W.A.. is divided into two associations. The upper association, located between +0.10 and +0.59 m relative to tidal datum, is characterized by Hydrococcus graniformis and Batillariella estuarina. The lower assemblage, between +0.09 and -0.29 m is dominated numerically by Zeacumantus diemenensis and Katelysia scalarina. The assemblages are equivalent to the midlittoral- and sublittoral-fringe groupings described on both sandy and rocky shores by other authors. There is no supralittoral-fringe component in the molluscan fauna ofprincess Royal Harbour. The break between the two assemblages occurs at + 0.1 m, just below the minimum tide level in the area. Possible reasons for the zonation patterns are discussed and compared with other studies of intertidal zonation on sandy shores.
Resumo:
The late-glacial vegetation development in northern Norway in response to climate changes during the Allerod, Younger Dryas (YD), and the transition to the Holocene is poorly known. Here we present a high-resolution record of floral and vegetation changes at lake Lusvatnet, south-west Andoya, between 13500 and 8000 cal b.p. Plant macrofossil and pollen analyses were done on the same sediment core and the proxy records follow each other very closely. The core has also been analyzed using an ITRAX XRF scanner in order to check the sediment sequence for disturbances or hiatuses. The core has a good radiocarbon-based chronology. The Saksunarvatn tephra fits very well chronostratigraphically. During both the Allerod and the Younger Dryas time-periods arctic vegetation prevailed, dominated by Salix polaris associated with many typically arctic herbs such as Saxifraga cespitosa, Saxifraga rivularis and Oxyria digyna. Both periods were cold and dry. Between 12450 and 12250 cal b.p. during the Younger Dryas chronozone, the assemblage changed, particularly in the increased abundance of Papaver sect. Scapiflora and other high-Arctic herbs, suggesting the development of polar desert vegetation mainly as a response to increased aridity. After 11520 cal b.p. a gradually warmer and more oceanic climate initiated a succession to dwarf-shrub vegetation and the establishment of Betula woodland after 1,000 years at c. 10520 cal b.p. The overall late-glacial aridity contrasts with oceanic conditions in southern Norway and is probably related to sea-ice extent.
Resumo:
The focus of this study was to disentangle the effects of multiple stressors on biodiversity, ecosystem functioning and stability. This project examined the effects of anthropogenic increased nutrient loads on the diversity of coastal ecosystems and the effects of loss of species on ecosystem functioning. Specifically, the direct effect of sewage outfalls on benthic communities was assessed using a fully replicated survey that incorporated spatial and temporal variation. In addition, two field experiments examined the effects of loss of species at multiple trophic levels, and tested for potential interactive effects with enhanced nutrient concentration conditions on benthic assemblage structure and ecosystem functioning. This research addressed priority issues outlined in the Biodiversity Knowledge Programme for Ireland (2006) and also aimed to deliver information relevant to European Union (EU) directives (the Water Framework Directive [WFD], the Habitats Directive and the Marine Strategy Framework Directive).
Resumo:
1. Global declines in biodiversity have stimulated much research into the consequences of species loss for ecosystems and the goods and services they provide. Species at higher trophic levels are at greater risk of human-induced extinction yet remarkably little is known about the effects of consumer species loss across multiple trophic levels in natural complex ecosystems. Previous studies have been criticized for lacking experimental realism and appropriate temporal scale, running for short periods that are not sufficient to detect many of the mechanisms operating in the field.
2. We manipulated the presence of two predator species and two groups of their prey (primary consumers) and measured their independent and interactive effects on primary producers in a natural marine benthic system. The presence of predators and their prey was manipulated in the field for 14 months to distinguish clearly the direct and indirect effects of predators on primary producers and to identify mechanisms driving responses.
3. We found that the loss of either predator species had indirect negative effects on species diversity and total cover of primary producers. These cascading effects of predator species loss were mediated by the presence of intermediate consumers. Moreover, the presence of different intermediate consumers, irrespective of the presence or absence of their predators, determined primary producer assemblage structure. We identified direct negative effects of predators on their prey and several indirect effects of predators on primary producers but not all interactions could have been predicted based on trophic level.
4. Our findings demonstrate the importance of trophic cascade effects coupled with non-trophic interactions when predicting the effects of loss of predator species on primary producers and consequently for ecosystem functioning. There is a pressing need for improved understanding of the effects of loss of consumers, based on realistic scenarios of diversity loss, to test conceptual frameworks linking predator diversity to variation in ecosystem functioning and for the protection of biodiversity, ecosystem functioning and related services.
Resumo:
Loss of biodiversity and nutrient enrichment are two of the main human impacts on ecosystems globally, yet we understand very little about the interactive effects of multiple stressors on natural communities and how this relates to biodiversity and ecosystem functioning. Advancing our understanding requires the following: (1) incorporation of processes occurring within and among trophic levels in natural ecosystems and (2) tests of context-dependency of species loss effects. We examined the effects of loss of a key predator and two groups of its prey on algal assemblages at both ambient and enriched nutrient conditions in a marine benthic system and tested for interactions between the loss of functional diversity and nutrient enrichment on ecosystem functioning. We found that enrichment interacted with food web structure to alter the effects of species loss in natural communities. At ambient conditions, the loss of primary consumers led to an increase in biomass of algae, whereas predator loss caused a reduction in algal biomass (i.e. a trophic cascade). However, contrary to expectations, we found that nutrient enrichment negated the cascading effect of predators on algae. Moreover, algal assemblage structure varied in distinct ways in response to mussel loss, grazer loss, predator loss and with nutrient enrichment, with compensatory shifts in algal abundance driven by variation in responses of different algal species to different environmental conditions and the presence of different consumers. We identified and characterized several context-dependent mechanisms driving direct and indirect effects of consumers. Our findings highlight the need to consider environmental context when examining potential species redundancies in particular with regard to changing environmental conditions. Furthermore, non-trophic interactions based on empirical evidence must be incorporated into food web-based ecological models to improve understanding of community responses to global change.