935 resultados para Aneurisma cerebral
Resumo:
Functional magnetic resonance imaging (fMRI) was used to identify and map the representation of the visual field in seven areas of human cerebral cortex and to identify at least two additional visually responsive regions. The cortical locations of neurons responding to stimulation along the vertical or horizontal visual field meridia were charted on three-dimensional models of the cortex and on unfolded maps of the cortical surface. These maps were used to identify the borders among areas that would be topographically homologous to areas V1, V2, V3, VP, and parts of V3A and V4 of the macaque monkey. Visually responsive areas homologous to the middle temporal/medial superior temporal area complex and unidentified parietal visual areas were also observed. The topography of the visual areas identified thus far is consistent with the organization in macaque monkeys. However, these and other findings suggest that human and simian cortical organization may begin to differ in extrastriate cortex at, or beyond, V3A and V4.
Resumo:
Activity-dependent plasticity is thought to underlie both formation of appropriate synaptic connections during development and reorganization of adult cortical topography. We have recently cloned many candidate plasticity-related genes (CPGs) induced by glutamate-receptor activation in the hippocampus. Screening the CPG pool for genes that may contribute to neocortical plasticity resulted in the identification of six genes that are induced in adult visual cortical areas in response to light. These genes are also naturally induced during postnatal cortical development. CPG induction by visual stimulation occurs primarily in neurons located in cortical layers II-III and VI and persists for at least 48 hr. Four of the visually responsive CPGs (cpg2, cpg15, cpg22, cpg29) are previously unreported genes, one of which (cpg2) predicts a "mini-dystrophin-like" structural protein. These results lend molecular genetic support to physiological and anatomical studies showing activity-dependent structural reorganization in adult cortex. In addition, these results provide candidate genes the function of which may underlie mechanisms of adult cortical reorganization.
Resumo:
Deposition of PrP amyloid in cerebral vessels in conjunction with neurofibrillary lesions is the neuropathologic hallmark of the dementia associated with a stop mutation at codon 145 of PRNP, the gene encoding the prion protein (PrP). In this disorder, the vascular amyloid in tissue sections and the approximately 7.5-kDa fragment extracted from amyloid are labeled by antibodies to epitopes located in the PrP sequence including amino acids 90-147. Amyloid-laden vessels are also labeled by antibodies against the C terminus, suggesting that PrP from the normal allele is involved in the pathologic process. Abundant neurofibrillary lesions are present in the cerebral gray matter. They are composed of paired helical filaments, are labeled with antibodies that recognize multiple phosphorylation sites in tau protein, and are similar to those observed in Alzheimer disease. A PrP cerebral amyloid angiopathy has not been reported in diseases caused by PRNP mutations or in human transmissible spongiform encephalopathies; we propose to name this phenotype PrP cerebral amyloid angiopathy (PrP-CAA).
Resumo:
The prognosis for patients with the high-grade cerebral glioma glioblastoma multiforme is poor. The median survival for primary tumors is < 12 months, with most recurring at the site of the original tumor, indicating that a more aggressive local therapy is required to eradicate the unresectable "nests" of tumor cells invading into adjacent brain. Two adjuvant therapies with the potential to destroy these cells are porphyrin-sensitized photodynamic therapy (PDT) and boron-sensitized boron neutron capture therapy (BNCT). The ability of a boronated porphyrin, 2,4-(alpha, beta-dihydroxyethyl) deuteroporphyrin IX tetrakiscarborane carboxylate ester (BOPP), to act as a photosensitizing agent was investigated in vitro with the C6 rat glioma cell line and in vivo with C6 cells grown as an intracerebral tumor after implantation into Wistar rats. These studies determined the doses of BOPP and light required to achieve maximal cell kill in vitro and selective tumor kill in vivo. The data show that BOPP is more dose effective in vivo by a factor of 10 than the current clinically used photosensitizer hematoporphyrin derivative and suggest that BOPP may have potential as a dual PDT/BNCT sensitizer.
Resumo:
We have analyzed the developmental pattern of beta-galactosidase (beta-gal) expression in the cerebral cortex of the beta 2nZ3'1 transgenic mouse line, which was generated using regulatory elements of the beta 2-microglobulin gene and shows ectopic expression in nervous tissue. From embryonic day 10 onward, beta-gal was expressed in the medial and dorsal cortices, including the hippocampal region, whereas lateral cortical areas were devoid of labeling. During the period of cortical neurogenesis (embryonic days 11-17), beta-gal was expressed by selective precursors in the proliferative ventricular zone of the neocortex and hippocampus, as well as by a number of migrating and postmigratory neurons arranged into narrow radial stripes above the labeled progenitors. Thus, the transgene labels a subset of cortical progenitors and their progeny. Postnatally, radial clusters of beta-gal-positive neurons were discernible until postpartum day 10. At this age, the clusters were 250 to 500 microns wide, composed of neurons spanning all the cortical layers and exhibiting several neuronal phenotypes. These data suggest molecular heterogeneity of cortical progenitors and of the cohorts of postmitotic neurons originating from them, which implies intrinsic molecular mosaicism in both cortical progenitors and developing neurons. Furthermore, the data show that neurons committed to the expression of the transgene migrate along very narrow, radial stripes.
Resumo:
Relative cerebral glucose metabolism was examined with positron-emission tomography (PET) as a measure of neuronal activation during performance of the classically conditioned eyeblink response in 12 young adult subjects. Each subject received three sessions: (i) a control session with PET scan in which unpaired presentations of the tone conditioned stimulus and corneal airpuff unconditioned stimulus were administered, (ii) a paired training session to allow associative learning to occur, and (iii) a paired test session with PET scan. Brain regions exhibiting learning-related activation were identified as those areas that showed significant differences in glucose metabolism between the unpaired control condition and well-trained state in the 9 subjects who met the learning criterion. Areas showing significant activation included bilateral sites in the inferior cerebellar cortex/deep nuclei, anterior cerebellar vermis, contralateral cerebellar cortex and pontine tegmentum, ipsilateral inferior thalamus/red nucleus, ipsilateral hippocampal formation, ipsilateral lateral temporal cortex, and bilateral ventral striatum. Among all subjects, including those who did not meet the learning criterion, metabolic changes in ipsilateral cerebellar nuclei, bilateral cerebellar cortex, anterior vermis, contralateral pontine tegmentum, ipsilateral hippocampal formation, and bilateral striatum correlated with degree of learning. The localization to cerebellum and its associated brainstem circuitry is consistent with neurobiological studies in the rabbit model of eyeblink classical conditioning and neuropsychological studies in brain-damaged humans. In addition, these data support a role for the hippocampus in conditioning and suggest that the ventral striatum may also be involved.
Resumo:
Cerebral cavernous malformation is a common disease of the brain vasculature of unknown cause characterized by dilated thin-walled sinusoidal vessels (caverns); these lesions cause varying clinical presentations which include headache, seizure, and hemorrhagic stroke. This disorder is frequently familial, with autosomal dominant inheritance. Using a general linkage approach in two extended cavernous malformation kindreds, we have identified linkage of this trait to chromosome 7q11.2-q21. Multipoint linkage analysis yields a peak logarithm of odds (lod) score of 6.88 with zero recombination with locus D7S669 and localizes the gene to a 7-cM region in the interval between loci ELN and D7S802.
Resumo:
Preconditioning with sublethal ischemia protects against neuronal damage after subsequent lethal ischemic insults in hippocampal neurons. A pharmacological approach using agonists and antagonists at the adenosine A1 receptor as well as openers and blockers of ATP-sensitive K+ channels has been combined with an analysis of neuronal death and gene expression of subunits of glutamate and gamma-aminobutyric acid receptors, HSP70, c-fos, c-jun, and growth factors. It indicates that the mechanism of ischemic tolerance involves a cascade of events including liberation of adenosine, stimulation of adenosine A1 receptors, and, via these receptors, opening of sulfonylurea-sensitive ATP-sensitive K+ channels.
Resumo:
The role of nitric oxide (NO) in the increase in local cerebral blood flow (LCBF) elicited by focal cortical epileptic seizures was investigated in anesthetized adult rats. Seizures were induced by topical bicuculline methiodide applied through two cranial windows drilled over homotopic sites of the frontal cortex, and LCBF was measured by quantitative autoradiography by using 4-iodo[N-methyl-14C]antipyrine. Superfusion of an inhibitor of NO synthase, N omega-nitro-L-arginine (NA; 1 mM), for 45 min abolished the increase of LCBF induced by topical bicuculline methiodide (10 mM) [164 +/- 18 ml/100 g per min in the artificial cerebrospinal fluid (aCSF)-superfused side and 104 +/- 12 ml/100 g per ml in the NA-superfused side; P < 0.005]. This effect was reversed by coapplication of an excess of L-arginine substrate (10 mM) (218 +/- 22 ml/100 g per min in the aCSF-superfused side and 183 +/- 31 ml/100 g per min in the NA + L-Arg-superfused side) but not by 10 mM D-arginine, a stereoisomer with poor affinity for NO synthase (193 +/- 17 ml/100 g per min in the aCSF-superfused side and 139 +/- 21 ml/100 g per min in the NA + D-Arg-superfused side; P < 0.005). Superfusion of the guanylyl cyclase inhibitor methylene blue attenuated the LCBF increase elicited by topical bicuculline methiodide by 25% +/- 16% (P < 0.05). The present findings suggest that NO is the mediator of the vasodilation in response to focal epileptic seizures.
Resumo:
Las expresiones faciales de la emoción constituyen estímulos altamente relevantes en la interacción humana, dado que son señales comunicativas que nos permiten inferir el estado interno de otras personas. La función comunicativa de las expresiones faciales de la emoción ha sido objeto de gran interés y existe abundante literatura sobre el tema. Muchos autores han investigado los mecanismos involucrados en la percepción y decodificación de las expresiones faciales desde distintas perspectivas. En estudios realizados con medidas de la actividad cerebral de alta resolución temporal (electroencefalografía-EEG- y magnetoencefalografía-MEG) que se centran en el curso temporal del procesamiento perceptivo de las expresiones faciales de la emoción se ha encontrado una sensibilidad temprana a diversas emociones. Por ejemplo, el componente N170 ha mostrado sensibilidad diferenciada a las expresiones faciales de la emoción (ver revisión de Hinojosa, Mercado & Carretié, 2015). Un procedimiento utilizado habitualmente para investigar el procesamiento afectivo es el paradigma de priming afectivo, en el que primes y targets emocionales se presentan secuencialmente. La técnica de potenciales evocados (event-related potentials-ERP) se ha empleado habitualmente para explorar estos procesos y los estudios se han centrado en dos componentes principales: el N400 y el Potencial Tardío Positivo (Late Positive Potential-LPP). Se ha encontrado que el N400 es altamente sensible a la incongruencia semántica, mientras que su sensibilidad a la incongruencia afectiva no está tan clara. Por el contrario, se ha observado modulación del LPP debida a la incongruencia afectiva en ausencia de efectos en N400 (Herring et al., 2011)...
Resumo:
Considerando a família como instituição primária a qual se tem acesso, e a sua relevância nos diversos processos os quais o ser humano passa durante a vida, um resultado desse movimento são as mudanças na dinâmica familiar, quando há, por exemplo, o adoecimento de algum dos membros e um familiar torna-se cuidador. , atentando-se para as necessidades de cada sistema familiar. O objetivo deste estudo foi descrever a qualidade da relação entre o cuidador familiar e adulto ou idoso pós-Acidente Vascular Cerebral, que se encontram no processo de reabilitação. Participaram deste estudo, familiares de 11 pacientes que se encontram em atendimento na Clínica de Fonoaudiologia da Faculdade de Odontologia de Bauru FOB/USP. Para a coleta de dados foram agendadas entrevistas com a aplicação de questionários para caracterizar os aspectos interacionais entre o cuidador familiar e a pessoa cuidada, avaliar o nível de dependência na realização de atividades básicas e instrumentais diárias e como esses fatores podem influenciar na sobrecarga do cuidador, considerando o tempo do Acidente Vascular Cerebral (tAVC) e tempo de convivência diária (tCD) e, consequentemente, oferecer uma qualidade da relação insatisfatória. A média de idade dos participantes foi de 49 anos, houve predominância do sexo feminino (63,6%), a média de tAVC de 44 meses e a média de tCD foi de 19 horas. Para a análise dos dados optou-se por uma análise descritiva e abordagem quantitativa para a apresentação dos dados, para determinar a correlação entre as variáveis foi utilizado o Coeficiente de Correlação de Spearman e adotado nível de significância de 5% (p<0,05). Os resultados oferecem subsídios para estudos complementares direcionados ao desenvolvimento de intervenções no âmbito familiar. A psicologia pode auxiliar nessa tarefa de observar os comportamentos e as interações dos indivíduos, além de avaliar o contexto desse paciente, em especial, na descrição da qualidade da relação entre paciente-familiar, partindo da atual situação vivenciada.
Resumo:
Stroke is a prevalent disorder with immense socioeconomic impact. A variety of chronic neurological deficits result from stroke. In particular, sensorimotor deficits are a significant barrier to achieving post-stroke independence. Unfortunately, the majority of pre-clinical studies that show improved outcomes in animal stroke models have failed in clinical trials. Pre-clinical studies using non-human primate (NHP) stroke models prior to initiating human trials are a potential step to improving translation from animal studies to clinical trials. Robotic assessment tools represent a quantitative, reliable, and reproducible means to assess reaching behaviour following stroke in both humans and NHPs. We investigated the use of robotic technology to assess sensorimotor impairments in NHPs following middle cerebral artery occlusion (MCAO). Two cynomolgus macaques underwent transient MCAO for 90 minutes. Approximately 1.5 years following the procedure these NHPs and two non-stroke control monkeys were trained in a reaching task with both arms in the KINARM exoskeleton. This robot permits elbow and shoulder movements in the horizontal plane. The task required NHPs to make reaching movements from a centrally positioned start target to 1 of 8 peripheral targets uniformly distributed around the first target. We analyzed four movement parameters: reaction time, movement time (MT), initial direction error (IDE), and number of speed maxima to characterize sensorimotor deficiencies. We hypothesized reduced performance in these attributes during a neurobehavioural task with the paretic limb of NHPs following MCAO compared to controls. Reaching movements in the non-affected limbs of control and experimental NHPs showed bell-shaped velocity profiles. In contrast, the reaching movements with the affected limbs were highly variable. We found distinctive patterns in MT, IDE, and number of speed peaks between control and experimental monkeys and between limbs of NHPs with MCAO. NHPs with MCAO demonstrated more speed peaks, longer MTs, and greater IDE in their paretic limb compared to controls. These initial results qualitatively match human stroke subjects’ performance, suggesting that robotic neurobehavioural assessment in NHPs with stroke is feasible and could have translational relevance in subsequent human studies. Further studies will be necessary to replicate and expand on these preliminary findings.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014