969 resultados para Alcoholic Fermentation
Resumo:
Many works have shown the potential of the Brazilian sugarcane industry as an electricity supplier. However, few studies have studied how this potential could be achieved without jeopardizing the production of sugar and ethanol. Also, the impact of modifications in the cogeneration plant on the costs of production of sugar and ethanol has not been evaluated. This paper presents an approach to the problem of exergy optimization of cogeneration systems in sugarcane mills. A general model to the sugar and ethanol production processes is developed based on data supplied by a real plant, and an exergy analysis is performed. A discussion is made about the variables that most affect the performance of the processes. Then, a procedure is presented to evaluate modifications in the cogeneration system and in the process, and their impact on the production costs of sugar, ethanol and electricity. Furthermore, a discussion on the renewability of processes is made based on an exergy index of renewability. As a general conclusion, besides adding a new revenue to the mill, the generation of excess electricity improves the exergo-environmental performance of the mill as a whole. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The effect of ultraviolet radiation on the properties of poly(3-hydroxybutyrate) (PHB) was studied. The PHB investigated is produced from microbial fermentation using saccharose from sugarcane as the carbon source to the bacteria. The material was exposed to artificial UV-A radiation for 3, 6, 9 and 12 weeks. The photodegradation effect was followed by changes of molecular weight, of chemical and crystalline structures, of thermal, morphological, optical and mechanical properties, as well as of biodegradability. The experimental results showed that PHB undergoes both chain scission and cross-linking reactions, but the continuous decrease in its mechanical properties and the low amount of gel content upon UV exposure indicated that the scission reactions were predominant. Molar mass, melting temperature and crystallinity measurements for two layers of PHB samples with different depth suggested that the material has a strong degradation profile, which was attributed to its dark colour that restricted the transmission of light. Previous photodegradation initially delayed PHB biodegradability, due to the superficial increase in crystallinity seen with UV exposure. The possible reactions taking place during PHB photodegradation were presented and discussed in terms of the infrared and nuclear magnetic resonance spectra. A reference peak (internal standard) in the infrared spectra was proposed for PHB photodegradation. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Bioethanol is a biofuel produced mainly from the fermentation of carbohydrates derived from agricultural feedstocks by the yeast Saccharomyces cerevisiae. One of the most widely adopted strains is PE-2, a heterothallic diploid naturally adapted to the sugar cane fermentation process used in Brazil. Here we report the molecular genetic analysis of a PE-2 derived diploid (JAY270), and the complete genome sequence of a haploid derivative (JAY291). The JAY270 genome is highly heterozygous (similar to 2 SNPs/kb) and has several structural polymorphisms between homologous chromosomes. These chromosomal rearrangements are confined to the peripheral regions of the chromosomes, with breakpoints within repetitive DNA sequences. Despite its complex karyotype, this diploid, when sporulated, had a high frequency of viable spores. Hybrid diploids formed by outcrossing with the laboratory strain S288c also displayed good spore viability. Thus, the rearrangements that exist near the ends of chromosomes do not impair meiosis, as they do not span regions that contain essential genes. This observation is consistent with a model in which the peripheral regions of chromosomes represent plastic domains of the genome that are free to recombine ectopically and experiment with alternative structures. We also explored features of the JAY270 and JAY291 genomes that help explain their high adaptation to industrial environments, exhibiting desirable phenotypes such as high ethanol and cell mass production and high temperature and oxidative stress tolerance. The genomic manipulation of such strains could enable the creation of a new generation of industrial organisms, ideally suited for use as delivery vehicles for future bioenergy technologies.
Resumo:
Saccharomyces cerevisiae hexokinase-less strains were produced to study the production of ethanol and fructose from sucrose. These strains do not have the hexokinases A and B. Twenty-three double-mutant strains were produced, and then, three were selected for presenting a smaller growth in yeast extract-peptone-fructose. In fermentations with a medium containing sucrose (180.3 g L-1) and with cell recycles, simulating industrial conditions, the capacity of these mutant yeasts in inverting sucrose and fermenting only glucose was well characterized. Besides that, we could also see their great tolerance to the stresses of fermentative recycles, where fructose production (until 90 g L-1) and ethanol production (until 42.3 g L-1) occurred in cycles of 12 h, in which hexokinase-less yeasts performed high growth (51.2% of wet biomass) and viability rates (77% of viable cells) after nine consecutive cycles.
Resumo:
Owing to its toxicity, aluminum (Al), which is one of the most abundant metals, inhibits the productivity of many cultures and affects the microbial metabolism. The aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Al on cell growth, viability, and budding, as the likely result of possible chelating action. For this purpose, Fleischmann`s yeast (Saccharomyces cerevisiae) was used in growth tests performed in 125-mL Erlenmeyer flasks containing 30 mL of YED medium (5.0 g/L yeast extract plus 20 g/L glucose) supplemented with the selected amounts of either vinasse or Al in the form of AlCl(3) center dot A H(2)O. Without vinasse, the addition of increasing levels of Al up to 54 mg/L reduced the specific growth rate by 18%, whereas no significant reduction was observed in its presence. The toxic effect of Al on S. cerevisiae growth and the mitigating effect of sugar cane vinasse were quantified by the exponential model of Ciftci et al. (Biotechnol Bioeng 25:2007-2023, 1983). The cell viability decreased from 97.7% at the start to 84.0% at the end of runs without vinasse and to 92.3% with vinasse. On the other hand, the cell budding increased from 7.62% at the start to 8.84% at the end of runs without vinasse and to 17.8% with vinasse. These results demonstrate the ability of this raw material to stimulate cell growth and mitigate the toxic effect of Al.
Resumo:
IBA application for rooting of Eucalyptus benthamii Maiden and Cambage x Eucalyptus dunnii Maiden minicuttings. Eucalyptus has great importance in the forestry sector and many advances in the area of improvement have been achieved with the advent of biotechnological techniques. However, some promising genotypes still do not have multiplication protocols with cloning techniques, such as minicutting. The study aimed to evaluate IBA concentrations for survival, rooting and vegetative vigor of E. benthamii x E. dunnii minicuttings, and determine the maximum technical efficiency dose. Ministumps H12, H19 and H20 clones were cultivated in a clonal minigarden under a semi-hydroponic system. For rooting, the rninicutting basal portion was plunged in hydro-alcoholic solutions, whose concentrations were: 0; 2,000; 4,000; 6,000 and 8,000 mg L(-1) of IBA. The experiment was conducted in a completely randomized design, with the factors consisting of three clones and five IBA concentrations, with five replications, containing 10 minicuttings per replication. IBA positively influenced the minicutting rooting processes, with differentiated behavior between the clones, with 30.32 to 55.45% rooting variation. The positives increments occurred until the highest IBA concentration for H12 and H19 clones. However, the range between 4,000 and 6,000 mg L(-1) of IBA treatments promoted the best rooting results for the H20 clone.
Resumo:
The behavior of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium on kippered beef was evaluated. Individual pieces of the product were separately inoculated on the top and bottom surfaces with each three- to six-strain pathogen cocktail at ca. 6.0 log CFU per piece and stored at 4, 10, 21, or 30 degrees C for up to 28 days in each of two trials. When kippered beef was inoculated with E coli O157:H7, Salmonella Typhimurium, or L. monocytogenes and stored at 4, 10, 2 1, or 30 degrees C for up to 28 days, pathogen numbers decreased ca. 0.4 to 0.9, 1.0 to 1.8, 3.0 to >= 5.25, and >= 5.0 to 5.25 log CFU per piece, respectively. Average D-values for E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes stored at 4 to 30 degrees C for 28 days were ca. 41 to 4.6, 40.8 to 5.3, and 29.5 to 4.3 days, respectively. As expected, the higher the storage temperature, the greater the level and rate of inactivation for all three pathogens. These data establish that kippered beef does not provide an environment conducive to proliferation of these pathogens.
Resumo:
The objective of this study was to detect and identify the autochthonous microbiota of raw milk with antagonistic activity on Listeria monocytogenes and Salmonella Enteritidis. Three hundred sixty colonies isolated from 15 raw milk samples were tested for antagonistic activity for L. monocytogenes and S. Enteritidis using the ""spot-on-the-lawn"" method. The colonies detected as antagonistic were identified using API 20 Strep. Two types of inhibition were observed: total, characterized by the formation of a well-defined halo around the colony, and partial, with the formation of a diffused halo. Ninety-one (25.3%) colonies presented antagonistic activity for L. monocytogenes and 33 (9.2%) for S. Enteritidis. Most of the antagonistic cultures were lactic acid bacteria, mainly Lactococcus lactis ssp. lactis and Enterococcus faecium. The results indicate that microorganisms in the natural microbiota of raw milk may play an important role in the inhibition of key pathogens in dairy products.
Resumo:
The mechanism of uptake of anthocyanins (as well as the type) from food in the intestine is not clear. Anthocyanin-rich extract from wild mulberry, composed of cyanidin-3-glucoside (79%) and cyanidin-3-rutino side (cy-3-rut) (19%), was orally administered to Wistar rats, and their concentrations were determined in plasma, kidney, and the gastrointestinal (GI) tract. The 2 glycosylated forms showed maximum concentration at 15 minutes after oral administration, both in plasma and kidney. The cyanidin-3-glucoside and cy-3-rut were found in plasma as glucuronides, as sulfates of cyanidin, and as unchanged forms. The area under the curve of concentration vs time (AUC(0-8h)) was 2.76 +/- 0.88 mu g hour/mL and 9.74 +/- 0.75 mu g hour/g for plasma and kidney, respectively. In spite of the low absorption, the increase in plasma anthocyanin level resulted in a significant increase in antioxidant capacity (P < .05). In the GI tract (stomach and small and large intestines), cyanidin glycosides were found unchanged, but a low amount of the aglycone form was present. Anthocyanin glycosides were no longer detected in the GI tract after 8 hours of administration. In vitro fermentation showed that the 2 cyanidin glycosides were totally metabolized by the rat colonic microflora, explaining their disappearance. In addition, the 2 products of their degradation, cyanidin and protocatechuic acid, were not detected in plasma and probably do not influence plasma antioxidant capacity. As found by the everted sac model, anthocyanins were transported across the enterocyte by the sodium-dependent glucose transporter. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Aim of the study: Alcoholic or hydroalcoholic preparations of the plant Solidago chilensis Meyen (Asteraceae) are employed in popular medicines to treat inflammation. The anti-inflammatory effects of the hydroalcoholic extract of aerial parts of the plant (93% ethanol) were investigated and the main components of the extract were identified. Materials and methods: Ear oedema was induced in male Wistar rats by topical application of the chloroform fraction of latex-extract from Euphorbia milii. Leukocyte mobilisation was quantified after air-pouch inflammation evoked by oyster glycogen. Leukocyte-endothelial interactions and mast cell degranulation were quantified by intravital microscopy. The extract itself was characterised via HPLC-DAD-MS and HPLC-MS/MS. Results: Topical (12.5-50 mg/kg) or intraperitoneal (25 or 50 mg/kg) administrations of the extract reduced ear oedema formation (>25% reduction). Intraperitoneal applications of 25 mg/kg of extract inhibited the migration of polymorphonuclear cells into the inflamed cavity (about 50%). In addition, the rolling behaviour and adherence of circulating leukocytes to postcapillary venules of the mesentery network was diminished (50%), but the mast cell degranulation in the perivascular area was not affected. The major components of the extract were identified as caffeoylquinic acid derivatives and the flavonoid rutin. Conclusions: The data presented herein show local and systemic anti-inflammatory effects of the hydroalcoholic extract of aerial parts of Solidago chilensis, and implicate the inhibition of leukocyte-endothelial interactions as an important mechanism of the extract`s action. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The effects of inulin-type fructans (ITF)-containing yacon flour (YF) on Fe bioavailability from ferric pyrophosphate (FP) were evaluated in Fe-deficient rats using the Hb repletion efficiency (HRE) assay. Weanling male Wistar rats were fed a low-Fe diet (12 mg/kg) for 15 days followed by 2 weeks of Fe repletion with diets providing 35 mg Fe/kg as either ferrous sulphate (FS) or FP, supplemented with 7.5% ITF as either YF or Raftilose (RAF), a purified ITF. ITF increased caecal fermentation, whereas YF was more butyrogenic than RAF. ITF improved FIRE in FP-fed rats, and those fed YF had a higher relative biological value compared with those fed FP and RAF. Liver Fe was increased by ITF, but only YF led to values similar to those in the FS group. It is observed that ITF increased caecal fermentation and Fe bioavailability. These effects were more pronounced when YF was the ITF source. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Inulin was used as a prebiotic to improve quality of skim milk fermented by pure cultures of Lactobacillus acidophilus Lactobacillus rhamnosus Lactobacillus bulgaricus and Bifidobacterium lactis binary co-cultures with Streptococcus thermophilus or a cocktail containing all them Inulin supplementation to pure cultures lowered the generation time with particular concern to S thermophilus and L acidophilus The generation time of all micro-organisms decreased in the following order mono-cultures co-cultures cocktail It was demonstrated a synergism between S thermophilus and the other strains and a bifidogenic effect of inulin Enumerations of L rhamnosus in cocktail markedly decreased compared to co-cultures likely because of greater competition for the same substrates The results of this work highlight the industrial potential of the cocktail mainly in terms of fermentation acceleration (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Lactulose can be considered as a prebiotic, which is able to stimulate healthy intestinal microflora. In the present work, the use of this ingredient in fermented milk improved quality of skim milk fermented by Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus bulgaricus and Bifidobacterium lactis in co-culture with Streptococcus thermophilus. Compared to control fermentations without lactulose, the addition of such a prebiotic in skim milk increased the counts of all probiotics, with particular concern to B. lactis (bifidogenic effect), the acidification rate and the lactic acid acidity, and concurrently reduced the time to complete fermentation (t(pH4.5)) and the pH at the end of cold storage for 1 to 35 days. (c) 2010 Elsevier B.V. All rights reserved.
Screening of Variables Influencing the Clavulanic Acid Production by Streptomyces DAUFPE 3060 Strain
Resumo:
Clavulanic acid (CA) is a beta-lactam antibiotic, which has a potent beta-lactamase inhibiting activity. The influence of five variables, namely pH (6.0, 6.4, and 6.8), temperature (28A degrees C, 30A degrees C, and 32A degrees C), agitation intensity (150, 200, and 250 rpm), glycerol concentration (5.0, 7.5, and 10 g/L) and soybean flour concentration (5.0, 12.5, and 20 g/L), on CA production by a new isolate of Streptomyces (DAUFPE 3060) was investigated in 250-mL Erlenmeyer flasks using a fractional factorial design. Temperature and soybean flour concentration were shown to be the two variables that exerted the most important effects on the production of CA at 95% confidence level. The highest CA concentration (494 mg/L) was obtained after 48 h at 150 rpm, 32A degrees C, pH 6.0, 5.0 g/L glycerol, and 20 g/L soybean flour concentrations. Under these conditions, the yields of biomass and product on consumed substrate were 0.26 g(X)/g(S) and 64.3 mg(P)/g(S), respectively. Fermentations performed in 3.0-L bench-scale fermenter allowed increasing the CA production by about 60%.
Resumo:
This study deals with the effects of the initial nitrogen source (NZ Case TT) level and the protocol of glucose addition during the fed-batch production of tetanus toxin by Clostridium tetani. An increase in the initial concentration of NZ Case TT (NZ(0)) accelerated cell growth, increased the consumption of the nitrogen source as well as the final yield of tetanus toxin, which achieved the highest values (50-60 L(f)/mL) for NZ(0) > 50 g/L. The addition of glucose at fixed times (16, 56, and 88 h) ensured a toxin yield (similar to 60 L(f)/mL) about 33% higher than those of fed-batch runs with addition at fixed concentration (similar to 45 L(f)/mL) and about 300% higher than those obtained in reference batch runs nowadays used at industrial,scale. The results of this work promise to substantially improve the present production of tetanus toxin and may be adopted for human vaccine production after detoxification and purification. (C) 2009 American Institute of Chemical Engineers Biotechnol. Prog., 26: 88-92, 2010