975 resultados para Ag atoms
Resumo:
There is currently a strong interest in mirrorless lasing systems(1), in which the electromagnetic feedback is provided either by disorder (multiple scattering in the gain medium) or by order (multiple Bragg reflection). These mechanisms correspond, respectively, to random lasers(2) and photonic crystal lasers(3). The crossover regime between order and disorder, or correlated disorder, has also been investigated with some success(4-6). Here, we report one-dimensional photonic-crystal lasing (that is, distributed feedback lasing(7,8)) with a cold atom cloud that simultaneously provides both gain and feedback. The atoms are trapped in a one-dimensional lattice, producing a density modulation that creates a strong Bragg reflection with a small angle of incidence. Pumping the atoms with auxiliary beams induces four-wave mixing, which provides parametric gain. The combination of both ingredients generates a mirrorless parametric oscillation with a conical output emission, the apex angle of which is tunable with the lattice periodicity.
Resumo:
Two-photon cooperative absorption is common in solid-state physics. In a sample of trapped cold atoms, this effect may open up new possibilities for the study of nonlinear effects. The experiment described herein starts with two colliding Na atoms in the S hyperfine ground state. The pair absorb two photons, resulting in both a P-1/2 and a P-3/2 atom. This excitation is observed by ionization using an external light source. A simple model that considers only dipole-dipole interactions between the atoms allows us to understand the basic features observed in the experimental results. Both the pair of generated atoms and the photons originating from their decay are correlated and may have interesting applications that remain to be explored.
Resumo:
Liquid configurations generated by Metropolis Monte Carlo simulations are used in time-dependent density functional theory calculations of the spectral line shifts and line profiles of the lowest lying excitation of the alkaline earth atoms, Be, Mg, Ca, Sr and Ba embedded in liquid helium. The results are in very good agreement with the available experimental data. Special attention is given to the calculated spectroscopic shift and the associated line broadening. The analysis specifies the inhomogeneous broadening of the three separate contributions due to the splitting of the s -> p transition of the alkaline earth atom in the liquid environment. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
We have studied, via laser absorption spectroscopy, the velocity distribution of Li-7 atoms released from cryogenic matrices of solid neon or molecular hydrogen. The Li atoms are implanted into the Ne or H-2 matrices - grown onto a sapphire substrate - by laser ablation of a solid Li or LiH precursor. A heat pulse is then applied to the sapphire substrate sublimating the matrix together with the isolated atoms. With a NiCr film resistor deposited directly onto the sapphire substrate we are able to transfer high instantaneous power to the matrix, thus reaching a fast sublimation regime. In this regime the Li atoms can get entrained in the released matrix gas, and we were also able to achieve matrix sublimation times down to 10 mu s for both H-2 or Ne matrix, enabling us to proceed with the trapping of the species of our interest such as atomic hydrogen, lithium, and molecules. The sublimation of the H-2 matrix, with its large center-of-mass velocity, provides evidence for a new regime of one-dimensional thermalization. The laser ablated Li seems to penetrate the H-2 matrix deeper than it does in Ne. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704125]
Resumo:
In this study, Cross-Polarization Magic-angle Spinning CP/MAS, 2D Exchange, Centerband-Only Detection of Exchange (CODEX), and Separated-Local-Field (SLF) NMR experiments were used to study the molecular dynamics of poly(ethylene glycol) (PEG) inside Hectorite/PEG intercalation compounds in both single- and double-layer configurations. The results revealed that the overall amplitude of the motions of the PEG chain in the single-layer configuration is considerably smaller than that observed for the double-layer intercalation compound. This result indicates that the effect of having the polymer chain interacting with both clay platelets is to produce a substantial decrease in the motional amplitudes of those chains. The presence of these dynamically restricted segments might be explained by the presence of anchoring points between the clay platelets and the PEG oxygen atoms, which was induced by the Na+ cations. By comparing the PEG motional amplitudes of the double-layered nanocomposites composed of polymers with different molecular weights, a decrease in the motional amplitude for the smaller PEG chain was observed, which might also be understood using the presence of anchoring points.
Resumo:
This thesis reports on the experimental investigation of controlled spin dependent interactions in a sample of ultracold Rubidium atoms trapped in a periodic optical potential. In such a situation, the most basic interaction between only two atoms at one common potential well, forming a micro laboratory for this atom pair, can be investigated. Spin dependent interactions between the atoms can lead to an intriguing time evolution of the system. In this work, we present two examples of such spin interaction induced dynamics. First, we have been able to observe and control a coherent spin changing interaction. Second, we have achieved to examine and manipulate an interaction induced time evolution of the relative phase of a spin 1/2-system, both in the case of particle pairs and in the more general case of N interacting particles. The first part of this thesis elucidates the spin-changing interaction mechanism underlying many fascinating effects resulting from interacting spins at ultracold temperatures. This process changes the spin states of two colliding particles, while preserving total magnetization. If initial and final states have almost equal energy, this process is resonant and leads to large amplitude oscillations between different spin states. The measured coupling parameters of such a process allow to precisely infer atomic scattering length differences, that e.g. determine the nature of the magnetic ground state of the hyperfine states in Rubidium. Moreover, a method to tune the spin oscillations at will based on the AC-Zeeman effect has been implemented. This allowed us to use resonant spin changing collisions as a quantitative and non-destructive particle pair probe in the optical lattice. This led to a series of experiments shedding light on the Bosonic superfluid to Mott insulator transition. In a second series of experiments we have been able to coherently manipulate the interaction induced time evolution of the relative phase in an ensemble of spin 1/2-systems. For two particles, interactions can lead to an entanglement oscillation of the particle pair. For the general case of N interacting particles, the ideal time evolution leads to the creation of spin squeezed states and even Schrödinger cat states. In the experiment we have been able to control the underlying interactions by a Feshbach resonance. For particle pairs we could directly observe the entanglement oscillations. For the many particle case we have been able to observe and reverse the interaction induced dispersion of the relative phase. The presented results demonstrate how correlated spin states can be engineered through control of atomic interactions. Moreover, the results point towards the possibility to simulate quantum magnetism phenomena with ultracold atoms in optical traps, and to realize and analyze many novel quantum spin states which have not been experimentally realized so far.
Resumo:
Die in den Jahren 1915-1923 erfolgte Produktion von Sprengstoffen und Vernichtung von Munition am Rüstungsaltstandort Hallschlag (Eifel) führte zu einer Nitroaromatenbelastung des Bodens, die bis heute nachgewiesen werden kann. Im Rahmen vorliegender Studie wurde das Sickerwasser außerhalb des Schadensherdes über einen Zeitraum von rund zwei Jahren mit Saugkerzensystemen beprobt und auf Nitroaromaten untersucht. Weiterhin wurde die klimatische Wasserbilanz für den Standort berechnet und Pegeldaten einer im Rahmen der Standortsicherung errichteten Sickerwassersammelleitung ausgewertet. Mit Hilfe dieses Datenmaterials konnte die mittlere Nitroaromatenkonzentration im Sickerwasser innerhalb und außerhalb des Schadensherdes ermittelt und die im hydrologischen Jahr 2004 ausgetragene Nitroaromatenmenge abgeschätzt werden.
Resumo:
This thesis describes experiments which investigate ultracold atom ensembles in an optical lattice. Such quantum gases are powerful models for solid state physics. Several novel methods are demonstrated that probe the special properties of strongly correlated states in lattice potentials. Of these, quantum noise spectroscopy reveals spatial correlations in such states, which are hidden when using the usual methods of probing atomic gases. Another spectroscopic technique makes it possible to demonstrate the existence of a shell structure of regions with constant densities. Such coexisting phases separated by sharp boundaries had been theoretically predicted for the Mott insulating state. The tunneling processes in the optical lattice in the strongly correlated regime are probed by preparing the ensemble in an optical superlattice potential. This allows the time-resolved observation of the tunneling dynamics, and makes it possible to directly identify correlated tunneling processes.
Resumo:
In questo lavoro ci si propone di descrivere la realizzazione di un sistema laser con cavit´a esterna e di un apparato da ultra-alto-vuoto, che verranno impiegati in un esperimento di miscele di atomi ultrafreddi che utilizza due specie atomiche di bosoni: 87Rb e 41K. Speciale attenzione viene rivolta verso le caratteristiche dello schema utilizzato e sul sistema di controllo in temperatura, che rendono questo sistema laser particolarmente stabile in frequenza e insensibile alle vibrazioni e variazioni di temperatura. Si sono poi analizzate le propriet´a dei materiali impiegati e delle procedure sperimentali adottate per la realizzazione del nuovo apparato da vuoto, al fine di garantire migliori prestazioni rispetto al sistema attualmente in uso.
Resumo:
This thesis reports on the creation and analysis of many-body states of interacting fermionic atoms in optical lattices. The realized system can be described by the Fermi-Hubbard hamiltonian, which is an important model for correlated electrons in modern condensed matter physics. In this way, ultra-cold atoms can be utilized as a quantum simulator to study solid state phenomena. The use of a Feshbach resonance in combination with a blue-detuned optical lattice and a red-detuned dipole trap enables an independent control over all relevant parameters in the many-body hamiltonian. By measuring the in-situ density distribution and doublon fraction it has been possible to identify both metallic and insulating phases in the repulsive Hubbard model, including the experimental observation of the fermionic Mott insulator. In the attractive case, the appearance of strong correlations has been detected via an anomalous expansion of the cloud that is caused by the formation of non-condensed pairs. By monitoring the in-situ density distribution of initially localized atoms during the free expansion in a homogeneous optical lattice, a strong influence of interactions on the out-of-equilibrium dynamics within the Hubbard model has been found. The reported experiments pave the way for future studies on magnetic order and fermionic superfluidity in a clean and well-controlled experimental system.
Resumo:
In this thesis, elemental research towards the implantation of a diamond-based molecular quantum computer is presented. The approach followed requires linear alignment of endohedral fullerenes on the diamond C(100) surface in the vicinity of subsurface NV-centers. From this, four fundamental experimental challenges arise: 1) The well-controlled deposition of endohedral fullerenes on a diamond surface. 2) The creation of NV-centers in diamond close to the surface. 3) Preparation and characterization of atomically-flat diamondsurfaces. 4) Assembly of linear chains of endohedral fullerenes. First steps to overcome all these challenges were taken in the framework of this thesis. Therefore, a so-called “pulse injection” technique was implemented and tested in a UHV chamber that was custom-designed for this and further tasks. Pulse injection in principle allows for the deposition of molecules from solution onto a substrate and can therefore be used to deposit molecular species that are not stable to sublimation under UHV conditions, such as the endohedral fullerenes needed for a quantum register. Regarding the targeted creation of NV-centers, FIB experiments were carried out in cooperation with the group of Prof. Schmidt-Kaler (AG Quantum, Physics Department, Johannes Gutenberg-Universität Mainz). As an entry into this challenging task, argon cations were implanted into (111) surface-oriented CaF2 crystals. The resulting implantation spots on the surface were imaged and characterized using AFM. In this context, general relations between the impact of the ions on the surface and their valency or kinetic energy, respectively, could be established. The main part of this thesis, however, is constituted by NCAFM studies on both, bare and hydrogen-terminated diamond C(100) surfaces. In cooperation with the group of Prof. Dujardin (Molecular Nanoscience Group, ISMO, Université de Paris XI), clean and atomically-flat diamond surfaces were prepared by exposure of the substrate to a microwave hydrogen plasma. Subsequently, both surface modifications were imaged in high resolution with NC-AFM. In the process, both hydrogen atoms in the unit cell of the hydrogenated surface were resolved individually, which was not achieved in previous STM studies of this surface. The NC-AFM images also reveal, for the first time, atomic-resolution contrast on the clean, insulating diamond surface and provide real-space experimental evidence for a (2×1) surface reconstruction. With regard to the quantum computing concept, high-resolution NC-AFM imaging was also used to study the adsorption and self-assembly potential of two different kinds of fullerenes (C60 and C60F48) on aforementioned diamond surfaces. In case of the hydrogenated surface, particular attention was paid to the influence of charge transfer doping on the fullerene-substrate interaction and the morphology emerging from self-assembly. Finally, self-assembled C60 islands on the hydrogen-terminated diamond surface were subject to active manipulation by an NC-AFM tip. Two different kinds of tip-induced island growth modes have been induced and were presented. In conclusion, the results obtained provide fundamental informations mandatory for the realization of a molecular quantum computer. In the process it was shown that NC-AFM is, under proper circumstances, a very capable tool for imaging diamond surfaces with highest resolution, surpassing even what has been achieved with STM up to now. Particular attention was paid to the influence of transfer doping on the morphology of fullerenes on the hydrogenated diamond surface, revealing new possibilities for tailoring the self-assembly of molecules that have a high electron affinity.
Resumo:
The functionalization of substrates through the application of nanostructured coatings allows to create new materials, with enhanced properties. In this work, the development of self-cleaning and antibacterial textiles, through the application of TiO2 and Ag based nanostructured coatings was carried out. The production of TiO2 and Ag functionalized materials was achieved both by the classical dip-padding-curing method and by the innovative electrospinning process to obtain nanofibers doped with nano-TiO2 and nano-Ag. In order to optimize the production of functionalized textiles, the study focused on the comprehension of mechanisms involved in the photocatalytic and antibacterial processes and on the real applicability of the products. In particular, a deep investigation on the relationship between nanosol physicochemical characteristics, nanocoating properties and their performances was accomplished. Self-cleaning textiles with optimized properties were obtained by properly purifying and applying commercial TiO2 nanosol while the studies on the photocatalytic mechanism operating in self-cleaning application demonstrated the strong influence of hydrophilic properties and of interaction surface/radicals on final performance. Moreover, a study about the safety in handling of nano-TiO2 was carried out and risk remediation strategies, based on “safety by design” approach, were developed. In particular, the coating of TiO2 nanoparticles by a SiO2 shell was demonstrated to be the best risk remediation strategy in term of biological response and preserving of photoreactivity. The obtained results were confirmed determining the reactive oxygen species production by a multiple approach. Antibacterial textiles for biotechnological applications were also studied and Ag-coated cotton materials, with significant anti-bacterial properties, were produced. Finally, composite nanofibers were obtained merging biopolymer processing and sol-gel techniques. Indeed, electrospun nanofibers embedded with TiO2 and Ag NPs, starting from aqueous keratin based formulation were produced and the photocatalytic and antibacterial properties were assessed. The results confirmed the capability of electrospun keratin nanofibers matrix to preserve nanoparticle properties.