953 resultados para Adenine Nucleotides


Relevância:

10.00% 10.00%

Publicador:

Resumo:

p53 is a tumor suppressor gene that is the most frequent target inactivated in cancers. Overexpression of wild-type p53 in rat embryo fibroblasts suppresses foci formation by other cooperating oncogenes. Introduction of wild-type p53 into cells that lack p53 arrests them at the G1/S boundary and reverses the transformed phenotype of some cells. The function of p53 in normal cells is illustrated by the ability of p53 to arrest cells at G1 phase of the cell cycle upon exposure to DNA-damaging agents including UV-irradiation and biosynthesis inhibitors.^ Since the amino acid sequence of p53 suggested that it may function as a transcription factor, we used GAL4 fusion assays to test that possibility. We found that wild-type p53 could specifically activate transcription when anchored by the GAL4 DNA binding domain. Mutant p53s, which have lost the ability to suppress foci formation by other oncogenes, were not able to activate transcription in this assay. Thus, we established a direct correlation between the tumor suppression and transactivation functions of p53.^ Having learned that p53 was a transcriptional activator, we next sought targets of p53 activation. Because many transcription factors regulate their own expression, we tested whether p53 had this autoregulatory property. Transient expression of wild-type p53 in cells increased the levels of endogenous p53 mRNA. Cotransfection of p53 together with a reporter bearing the p53 promoter confirmed that wild-type p53 specifically activates its own promoter. Deletion analysis from both the 5$\sp\prime$ and 3$\sp\prime$ ends of the promoter minimized the region responsible for p53 autoregulation to 45 bp. Methylation interference identified nucleotides involved in protein-DNA interaction. Mutations within this protected site specifically eliminated the response of the promoter to p53. In addition, multiple copies of this element confer responsiveness to wild-type p53 expression. Thus, we identified a F53 responsive element within the p53 promoter.^ The presence of a consensus NF-$\kappa$B site in the p53 promoter suggested that NF-KB may regulate p53 expression. Gel-shift experiments showed that both the p50 homodimer and the p50/p65 heterodimer bind to the p53 promoter. In addition, the p65 subunit of NF-$\kappa$B activates the p53 promoter in transient transfection experiments. TNF $\alpha$, a natural NF-$\kappa$B inducer, also activates the p53 promoter. Both p65 activation and TNF $\alpha$ induction require an intact NF-$\kappa$B site in the p53 promoter. Since NF-$\kappa$B activation occurs as a response to stress and p53 arrests cells in G1/S, where DNA repair occurs, activation of p53 by NF-$\kappa$B could be a mechanism by which cells recover from stress.^ In conclusion, we provided the first data that wild-type p53 functions as a transcriptional activator, whereas mutant p53 cannot. The correlation between growth suppression and transcriptional activation by p53 implies a pathway of tumor suppression. We have analyzed upstream components of the pathway by the identification of both p53 and NF-$\kappa$B as regulators of the p53 promoter. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this work was to examine the possible mechanisms for the regulation of cytochrome c gene expression in response to increased contractile activity in rat skeletal muscle. The working hypothesis was that increased contractile activity enhances cytochrome c gene expression through a cis-element. A 110% increase in cytochrome c mRNA concentration was observed in tibialis anterior (TA) muscle after 9 days of chronic stimulation. Similar difference (120%) exists between soleus (SO) muscle of higher contractile activity and white vastus lateralis (WV) muscle of lower contractile activity. These results suggest that the endogenous cytochrome c gene expression is regulated by contractile activity. Cytochrome c-reporter genes were injected into skeletal muscles to identify the cis-element that is responsible for the regulation. Although the data was inconclusive, part of it suggested the importance of the 3$\sp\prime$-untranslated region (3$\sp\prime$-UTR) in mediating the response to increased contractile activity.^ RNA gel mobility shift (GMSA) and ultraviolet (UV) cross-linking assays revealed specific RNA-protein interaction in a 50-nucleotide region of the 3$\sp\prime$-UTR in unstimulated TA muscle. Computer analysis predicted a stem-loop structure of 17 nucleotides, which provides a structural basis for RNA-protein interaction. These 17 nucleotides are 100% conserved among rat, mouse and human cytochrome c genes and their 13 pseudogenes, suggesting a functional role for this region. The RNA-protein interaction was significantly less in highly active SO muscle than in inactive WV muscle and was dramatically decreased in stimulated TA muscle due to a protein inhibitor(s) associated with ribosome. It is possible that cytochrome c mRNAs undergoing translation are subject to a compartmentalized regulatory influence.^ The conclusion from these results is that increases in contractile activity induce or activate a protein inhibitor(s) associated with ribosome in rat skeletal muscle. The inhibitor decreases RNA-protein interaction in the 3$\sp\prime$-UTR of cytochrome c mRNA, which may result in increased mRNA stability and/or translation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our laboratory has developed and partially characterized a strain of New Zealand white rabbits that are resistant to the hypercholesterolemia which typically occurs in normal rabbits when fed a cholesterol-enriched diet. This phenotype is most likely attributed to an increase in bile acid excretion by hypercholesterolemia-resistant (CRT) rabbits as a result of elevated enzyme activity of cholesterol 7$\alpha$-hydroxylase (C7$\alpha$H), the rate-limiting enzyme in bile acid synthesis. Northern analysis revealed that CRT rabbits, in comparison to normal rabbits, have a 7-fold greater steady-state C7$\alpha$H mRNA levels irrespective of dietary regimen. The C7$\alpha$H gene in both phenotypes was determined to be a single copy gene. The hypothesis was that the elevated C7$\alpha$H mRNA levels in CRT rabbits, in comparison to normal animals, was due to an increase in the transcription rate of the C7$\alpha$H gene as a result of a mutation in a cis-acting element and/or a trans-acting factor within the hepatocyte. To isolate the C7$\alpha$H gene from both normal and CRT rabbits, genomic libraries were prepared from both phenotypes into $\lambda$GEM12 vectors using conventional techniques. Three CRT and one normal phage clones that contained the C7$\alpha$H gene were identified by screening the library with a series of probes located within different exons of the C7$\alpha$H cDNA. Sequencing analysis confirmed that approximately 1100 bp of the C7$\alpha$H 5'-flanking region from both normal and CRT phenotypes was identical. The increase in C7$\alpha$H mRNA levels was not attributed to a cis-acting mutation within this region. Liver nuclear extracts were prepared from normal and CRT rabbits maintained either on a basal or 0.25% cholesterol-enriched diet and incubated with several radiolabeled DNA fragments from the C7$\alpha$H gene. A 37 basepair region, located between nucleotides $-$452 to $-$416 was identified that had altered binding patterns between normal and CRT rabbits as a function of diet. Two additional regions, $-$747 to $-$575 and $-$580 to $-$442, produced banding patterns which were identical, irrespective of phenotype or diet. In conclusion, these studies suggested that the increase in C7$\alpha$H mRNA in CRT rabbits was due to differences in binding of a cholesterol-responsive transcription factor to the C7$\alpha$H promoter. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Like other simple retroviruses the murine sarcoma virus ts110 (MuSVts110) displays an inefficient mode of genome splicing. But, unlike the splicing phenotypic of other retroviruses, the splicing event effected upon the transcript of MuSVts110 is temperature sensitive. Previous work in this laboratory has established that the conditionally defective nature of MuSVts110 RNA splicing is mediated in cis by features in the viral transcript. Here we show that the 5$\sp\prime$ splice site of the MuSVts110 transcript acts as a point of control of the overall splicing efficiency at both permissive and nonpermissive temperatures for splicing. We strengthened and simultaneously weakened the nucleotide structure of the 5$\sp\prime$ splice site in an attempt to elucidate the differential effects each of the two known critical splicing components which interact with the 5$\sp\prime$ splice site have on the overall efficiency of intron excision. We found that a transversion of the sixth nucleotide, resulting in the formation of a near-consensus 5$\sp\prime$ splice site, dramatically increased the overall efficiency of MuSVts110 RNA splicing and abrogated the thermosensitive nature of this splicing event. Various secondary mutations within this original transversion mutant, designed to selectively decrease specific splicing component interactions, lead to recovery of inefficient and thermosensitive splicing. We have further shown that a sequence of 415 nucleotides lying in the downstream exon of the viral RNA and hypothesized to act as an element in the temperature-dependent inhibition of splicing displays a functional redundancy throughout its length; loss and/or replacement of any one sequence of 100 nucleotides within this sequence does not, with one exception detailed below, diminish the degree to which MuSVts110 RNA is inhibited to splice at the restrictive temperature. One specific deletion, though, fortuitously juxtaposed and activated cryptic consensus splicing signals for the excision of a cryptic intron within the downstream exon and markedly potentiated--across a newly defined cryptic exon--the splicing event effected upon the upstream, native intron. We have exploited this mutant of MuSVts110 to further an understanding of the process of exon definition and intron definition and show that the polypyrimidine tract and consensus 3$\sp\prime$ splice site, as well as the 5$\sp\prime$ splice site, within the intron at the 3$\sp\prime$ flank of the defined exon are required for the exon's definition; implying that definition of the downstream intron is required for the in vivo definition of the proximal, upstream exon. Finally; we have shown, through the construction of heterologous mutants of MuSVts110 employing a foreign 3$\sp\prime$ end-forming sequence, that efficiency of transcript splicing can be increased--to a degree which abrogates its thermosensitive nature--in direct proportion to increasing proximity of the 3$\sp\prime$ end-forming signal to the terminal 3$\sp\prime$ splice site. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Formation of a triple helix resulting from oligonucleotide binding to the DNA double helix offers new possibilities to control gene expression at the transcriptional level. Purine-motif triplexes can be formed under physiological pH. Nevertheless, this formation was inhibited by certain monovalent cations during the association but not during dissociation. Since triplexes are very stable, it was possible to assemble them in the absence of KCl and have them survive throughout the course of an in vitro transcription reaction. As for the design of a better triplex-forming oligonucleotide, 12 nucleotides in length afforded the highest binding affinity. G/T-rich oligonucleotides can be very polymorphic in solution. The conditions for forming purine-motif triplexes, duplexes or G-quartets were determined. Understanding these parameters will be important for the practical use of G-rich oligonucleotides in the development of DNA aptamers where the structure of the oligonucleotide is paramount in dictating its function. Finally, purine-motif triplexes were demonstrated to significantly inhibit gene transcription in vitro. The optimal effect on this process was dependent on the location of triplexes within the promoter, i.e., whether upstream or proximally downstream of the transcription start site. The mechanism for the inhibition of transcription appeared to be interference with initiation through preventing engagement by RNA polymerase. This finding is revolutionary when compared to the conventional model where triplexes inhibit transcription only by occluding binding by trans-acting proteins. Our findings broaden the utility of triplexes and support a strategy for antigene therapy by triplexes. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-Chloro-9-(2-deoxy-2-fluoro-$\beta $-D-arabinofuranosyl)adenine(Cl-F-ara-A) is a new deoxyadenosine analogue which is resistant to phosphorolytic cleavage and deamination, and exhibits therapeutic activity for both leukemia and solid tumors in experimental systems. To characterize its mechanism of cytotoxicity, the present study investigated the cellular pharmacology and the biochemical and molecular mechanisms of action of Cl-F-ara-A, from entrance of the drug into the cell, chemical changes to active metabolites, targeting on different cellular enzymes, to final programmed cell death response to the drug treatment.^ Cl-F-ara-A exhibited potent inhibitory action on DNA synthesis in a concentration-dependent and irreversible manner. The mono-, di-, and triphosphates of Cl-F-ara-A accumulated in cells, and their elimination was non-linear with a prolonged terminal phase, which resulted in prolonged dNTP depression. Ribonucleotide reductase activity was inversely correlated with the cellular Cl-F-ara-ATP level, and the inhibition of the reductase was saturated at higher cellular Cl-F-ara-ATP concentrations. The sustained inhibition of ribonucleotide reductase and the consequent depletion of deoxynucleotide triphosphate pools result in a cellular Cl-F-ara-ATP to dATP ratio which favors analogue incorporation into DNA.^ Incubation of CCRF-CEM cells with Cl-F-ara-A resulted in the incorporation of Cl-F-ara-AMP into DNA. A much lesser amount was associated with RNA, suggesting that Cl-F-ara-A is a more DNA-directed compound. The site of Cl-F-ara-AMP in DNA was related to the ratio of the cellular concentrations of the analogue triphosphate and the natural substrate dATP. Clonogenicity assays showed a strong inverse correlation between cell survival and Cl-F-ara-AMP incorporation into DNA, suggesting that the incorporation of Cl-F-ara-A monophosphate into DNA is critical for the cytotoxicity of Cl-F-ara-A.^ Cl-F-ara-ATP competed with dATP for incorporation into the A-site of the extending DNA strand catalyzed by both DNA polymerase $\alpha$ and $\varepsilon$. The incorporation of Cl-F-ara-AMP into DNA resulted in termination of DNA strand elongation, with the most pronounced effect being observed at Cl-F-ara-ATP:dATP ratio $>$1. The presence of Cl-F-ara-AMP at the 3$\sp\prime$-terminus of DNA also resulted in an increased incidence of nucleotide misincorporation in the following nucleotide position. The DNA termination and the nucleotide misincorporation induced by the incorporation of Cl-F-ara-AMP into DNA may contribute to the cytotoxicity of Cl-F-ara-A. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viral systems have contributed tremendously to the understanding of eukaryotic molecular biology. The proportional pattern of retroviral RNA expression offers many clues into the alternative splicing of cellular transcripts. The MuSVts110 virus presents an unusual expression system, where the mechanistic combination of RNA splicing and cellular transformation can be physiologically manipulated. Splicing of MuSVts110 pre-mRNA occurs inefficiently (30%-50%) at 33$\sp\circ$C or below and is subdued at 39$\sp\circ$C ($<$5%). Like most alternatively spliced cellular and retroviral transcripts, the MuSVts110 pre-mRNA contains cis-acting intron and exon sequences that attenuate splicing. These include a splicing inhibitory sequence at the 3$\prime$ end of the MuSVts110 v-mos exon, called the E2 Distal Element (E2DE), and a sub-optimal 3$\prime$ splice site. The E2DE directly inhibits MuSVts110 RNA splicing in a sequence-specific fashion at 39$\sp\circ$C but not at 28$\sp\circ$C, potentially through the association of cellular factors. Inefficient MuSVts110 splicing is pre-dominantly attributed to the utilization of multiple weak branchpoint sequences located between $-113$ and $-34$ nucleotides upstream of the 3$\prime$ splice site. The molecular control of MuSVts110 splicing, represented primarily by scattered multiple inefficient branchpoint sequences that are conditionally modulated by the E2DE at higher growth temperatures, is discussed. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Se micropropagó Cissus tiliacea, recurso fitogenético con potencial agronómico y farmacológico, en los medios de cultivo Murashige-Skoog (MS) y Lloyd y McCown (WPM). En ambos medios se generaron resultados similares para número de brotes, nudos, hojas y raíces adventicias, sólo existió diferencia significativa (p ≤ 0,05) en la formación de callo. Para la multiplicación in vitro se utilizó WPM adicionado con 0; 0,5; 1,0; 1,5 ó 2,0 mg L-1 de benciladenina (BA) y se emplearon tres tipos de segmentos nodales (basal, medio y apical). Las concentraciones de 0 y 0,5 mg L-1 de BA resultaron en un mayor tamaño y desarrollo del explante, además permitieron la formación de 1,2 a 1,6 raíces por explante. Las concentraciones de 1,5 y 2,0 mg L-1 de BA indujeron la formación de callo. No existió diferencia significativa en las variables evaluadas por efecto del tipo de segmento nodal establecido in vitro. En el enraizamiento, en el medio MS, se evaluaron tres tipos de auxinas: ácido naftalen-1-acético (ANA), ácido indol-3-butírico (AIB) y ácido indol- 3-acético (AIA) a 0,5 mg L-1; el mayor número de raíces secundarias y diámetro de la raíz principal fue inducido por ANA, sin embargo AIB indujo una mayor elongación de la raíz principal. Los resultados del presente trabajo sugieren que el cultivo in vitro de C. tiliacea es una alternativa para su conservación y multiplicación.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Future oceans are predicted to contain less oxygen than at present. This is because oxygen is less soluble in warmer water and predicted stratification will reduce mixing. Hypoxia in marine environments is thus likely to become more widespread in marine environments and understanding species-responses is important to predicting future impacts on biodiversity. This study used a tractable model, the Antarctic clam, Laternula elliptica, which can live for 36 years, and has a well-characterized ecology and physiology to understand responses to hypoxia and how the effect varied with age. Younger animals had a higher condition index, higher adenylate energy charge and transcriptional profiling indicated that they were physically active in their response to hypoxia, whereas older animals were more sedentary, with higher levels of oxidative damage and apoptosis in the gills. These effects could be attributed, in part, to age-related tissue scaling; older animals had proportionally less contractile muscle mass and smaller gills and foot compared with younger animals, with consequential effects on the whole-animal physiological response. The data here emphasize the importance of including age effects, as large mature individuals appear to be less able to resist hypoxic conditions and this is the size range that is the major contributor to future generations. Thus, the increased prevalence of hypoxia in future oceans may have marked effects on benthic organisms' abilities to persist and this is especially so for long-lived species when predicting responses to environmental perturbation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tara Oceans Expedition (2009-2013) sampled the world oceans on board a 36 m long schooner, collecting environmental data and organisms from viruses to planktonic metazoans for later analyses using modern sequencing and state-of-the-art imaging technologies. Tara Oceans Data are particularly suited to study the genetic, morphological and functional diversity of plankton. Data sets in this collection provide methodological and environmental context to all samples collected during the Tara Oceans Expedition (2009-2013).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ocean Sampling Day (OSD) is a simultaneous sampling campaign of the world's oceans which took place (for the first time) on the summer solstice (June 21st) in the year 2014. These cumulative samples, related in time, space and environmental parameters, provide insights into fundamental rules describing microbial diversity and function and contribute to the blue economy through the identification of novel, ocean-derived biotechnologies. We see OSD data as a reference data set for generations of experiments to follow in the coming decade. The present data set includes a description of each sample collected during the Ocean Sampling Day 2014 and provides contextual environmental data measured concurrently with the collection of water samples for genomic analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

El trigo blando (Triticum aestivum ssp vulgare L., AABBDD, 2n=6x=42) presenta propiedades viscoélasticas únicas debidas a la presencia en la harina de las prolaminas: gluteninas y gliadinas. Ambos tipos de proteínas forman parte de la red de gluten. Basándose en la movilidad en SDS-PAGE, las gluteninas se clasifican en dos grupos: gluteninas de alto peso molecular (HMW-GS) y gluteninas de bajo peso molecular (LMW-GS). Los genes que codifican para las HMW-GS se encuentran en tres loci del grupo 1 de cromosomas: Glu-A1, Glu-B1 y Glu-D1. Cada locus codifica para uno o dos polipéptidos o subunidades. La variación alélica de las HMW-GS es el principal determinante de de la calidad harino-panadera y ha sido ampliamente estudiado tanto a nivel de proteína como de ADN. El conocimiento de estas proteínas ha contribuido sustancialmente al progreso de los programas de mejora para la calidad del trigo. Comparadas con las HMW-GS, las LMW-GS forman una familia proteica mucho más compleja. La mayoría de los genes LMW se localizan en el grupo 1 de cromosomas en tres loci: Glu-A3, Glu-B3 y Glu-D3 que se encuentran estrechamente ligados a los loci que codifican para gliadinas. El número de copias de estos genes ha sido estimado entre 10-40 en trigo hexaploide, pero el número exacto aún se desconoce debido a la ausencia de un método eficiente para diferenciar los miembros de esta familia multigénica. La nomenclatura de los alelos LMW-GS por electroforesis convencional es complicada, y diferentes autores asignan distintos alelos a la misma variedad lo que dificulta aún más el estudio de esta compleja familia. El uso de marcadores moleculares para la discriminación de genes LMW, aunque es una tarea dificil, puede ser muy útil para los programas de mejora. El objetivo de este trabajo ha sido profundizar en la relación entre las gluteninas y la calidad panadera y desarrollar marcadores moleculares que permitan ayudar en la correcta clasificación de HMW-GS y LMW-GS. Se han obtenido dos poblaciones de líneas avanzadas F4:6 a partir de los cruzamientos entre las variedades ‘Tigre’ x ‘Gazul’ y ‘Fiel’ x ‘Taber’, seleccionándose para los análisis de calidad las líneas homogéneas para HMW-GS, LMW-GS y gliadinas. La determinación alélica de HMW-GS se llevó a cabo por SDS-PAGE, y se complementó con análisis moleculares, desarrollándose un nuevo marcador de PCR para diferenciar entre las subunidades Bx7 y Bx7*del locus Glu-B1. Resumen 2 La determinación alélica para LMW-GS se llevó a cabo mediante SDS-PAGE siguiendo distintas nomenclaturas y utilizando variedades testigo para cada alelo. El resultado no fue concluyente para el locus Glu-B3, así que se recurrió a marcadores moleculares. El ADN de los parentales y de los testigos se amplificó usando cebadores diseñados en regiones conservadas de los genes LMW y fue posteriormente analizado mediante electroforesis capilar. Los patrones de amplificación obtenidos fueron comparados entre las distintas muestras y permitieron establecer una relación con los alelos de LMW-GS. Con este método se pudo aclarar la determinación alélica de este locus para los cuatro parentales La calidad de la harina fue testada mediante porcentaje de contenido en proteína, prueba de sedimentación (SDSS) y alveógrafo de Chopin (parámetros P, L, P/L y W). Los valores fueron analizados en relación a la composición en gluteninas. Las líneas del cruzamiento ‘Fiel’ x ‘Taber’ mostraron una clara influencia del locus Glu-A3 en la variación de los valores de SDSS. Las líneas que llevaban el nuevo alelo Glu-A3b’ presentaron valores significativamente mayores que los de las líneas con el alelo Glu-A3f. En las líneas procedentes del cruzamiento ‘Tigre ’x ‘Gazul’, los loci Glu-B1 y Glu-B3 loci mostraron ambos influencia en los parámetros de calidad. Los resultados indicaron que: para los valores de SDSS y P, las líneas con las HMW-GS Bx7OE+By8 fueron significativamente mejores que las líneas con Bx17+By18; y las líneas que llevaban el alelo Glu-B3ac presentaban valores de P significativamente superiores que las líneas con el alelo Glu-B3ad y significativamente menores para los valores de L . El análisis de los valores de calidad en relación a los fragmentos LMW amplificados, reveló un efecto significativo entre dos fragmentos (2-616 y 2-636) con los valores de P. La presencia del fragmento 2-636 estaba asociada a valores de P mayores. Estos fragmentos fueron clonados y secuenciados, confirmándose que correspondían a genes del locus Glu-B3. El estudio de la secuencia reveló que la diferencia entre ambos se hallaba en algunos SNPs y en una deleción de 21 nucleótidos que en la proteína correspondería a un InDel de un heptapéptido en la región repetida de la proteína. En este trabajo, la utilización de líneas que difieren en el locus Glu-B3 ha permitido el análisis de la influencia de este locus (el peor caracterizado hasta la fecha) en la calidad panadera. Además, se ha validado el uso de marcadores moleculares en la determinación alélica de las LMW-GS y su relación con la calidad panadera. Summary 3 Bread wheat (Triticum aestivum ssp vulgare L., AABBDD, 2n=6x=42) flour has unique dough viscoelastic properties conferred by prolamins: glutenins and gliadins. Both types of proteins are cross-linked to form gluten polymers. On the basis of their mobility in SDS-PAGE, glutenins can be classified in two groups: high molecular weight glutenins (HMW-GS) and low molecular weight glutenins (LMW-GS). Genes encoding HMW-GS are located on group 1 chromosomes in three loci: Glu-A1, Glu-B1 and Glu-D1, each one encoding two polypeptides, named subunits. Allelic variation of HMW-GS is the most important determinant for bread making quality, and has been exhaustively studied at protein and DNA level. The knowledge of these proteins has substantially contributed to genetic improvement of bread quality in breeding programs. Compared to HMW-GS, LMW-GS are a much more complex family. Most genes encoded LMW-GS are located on group 1 chromosomes. Glu-A3, Glu-B3 and Glu-D3 loci are closely linked to the gliadin loci. The total gene copy number has been estimated to vary from 10–40 in hexaploid wheat. However, the exact copy number of LMW-GS genes is still unknown, mostly due to lack of efficient methods to distinguish members of this multigene family. Nomenclature of LMW-GS alleles is also unclear, and different authors can assign different alleles to the same variety increasing confusion in the study of this complex family. The use of molecular markers for the discrimination of LMW-GS genes might be very useful in breeding programs, but their wide application is not easy. The objective of this work is to gain insight into the relationship between glutenins and bread quality, and the developing of molecular markers that help in the allele classification of HMW-GS and LMW-GS. Two populations of advanced lines F4:6 were obtained from the cross ‘Tigre’ x ‘Gazul’ and ‘Fiel’ x ‘Taber’. Lines homogeneous for HMW-GS, LMW-GS and gliadins pattern were selected for quality analysis. The allele classification of HMW-GS was performed by SDS-PAGE, and then complemented by PCR analysis. A new PCR marker was developed to undoubtedly differentiate between two similar subunits from Glu-B1 locus, Bx7 and Bx7*. The allele classification of LMW-GS was initially performed by SDS-PAGE following different established nomenclatures and using standard varieties. The results were not completely concluding for Glu-B3 locus, so a molecular marker system was applied. DNA from parental lines and standard varieties was amplified using primers designed in conserved domains of LMW genes and analyzed by capillary electrophoresis. The pattern of amplification products obtained was compared among samples and related to the protein allele classification. It was possible to establish a correspondence between specific amplification products and almost all LMW alleles analyzed. With this method, the allele classification of the four parental lines was clarified. Flour quality of F4:6 advanced lines were tested by protein content, sedimentation test (SDSS) and alveograph (P, L, P/L and W). The values were analyzed in relation to the lines prolamin composition. In the ‘Fiel’ x ‘Taber’ population, Glu-A3 locus showed an influence in SDSS values. Lines carrying new allele Glu-A3b’, presented a significantly higher SDSS value than lines with Glu-A3f allele. In the ‘Tigre ’x ‘Gazul’ population, the Glu-B1 and Glu-B3 loci also showed an effect in quality parameters, in SDSS, and P and L values. Results indicated that: for SDSS and P, lines with Bx7OE+By8 were significantly better than lines with Bx17+By18; lines carrying Glu-B3ac allele had a significantly higher P values than Glu-B3ad allele values. lines with and lower L The analysis of quality parameters and amplified LMW fragments revealed a significant influence of two peaks (2-616 y 2-636) in P values. The presence of 2-636 peak gave higher P values than 2-616. These fragments had been cloned and sequenced and identified as Glu-B3 genes. The sequence analysis revealed that the molecular difference between them was some SNPs and a small deletion of 21 nucleotides that in the protein would produce an InDel of a heptapeptide in the repetitive region. In this work, the analysis of two crosses with differences in Glu-3 composition has made possible to study the influence of LMG-GS in quality parameters. Specifically, the influence of Glu-B3, the most interesting and less studied loci has been possible. The results have shown that Glu-B3 allele composition influences the alveograph parameter P (tenacity). The existence of different molecular variants of Glu-B3 alleles have been assessed by using a molecular marker method. This work supports the use of molecular approaches in the study of the very complex LMW-GS family, and validates their application in the analysis of advanced recombinant lines for quality studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, the purification and characterization of an extracellular elicitor protein, designated AsES, produced by an avirulent isolate of the strawberry pathogen Acremonium strictum, are reported. The defense eliciting activity present in culture filtrates was recovered and purified by ultrafiltration (cutoff, 30 kDa), anionic exchange (Q-Sepharose, pH 7.5), and hydrophobic interaction (phenyl-Sepharose) chromatographies. Two-dimensional SDS-PAGE of the purified active fraction revealed a single spot of 34 kDa and pI 8.8. HPLC (C2/C18) and MS/MS analysis confirmed purification to homogeneity. Foliar spray with AsES provided a total systemic protection against anthracnose disease in strawberry, accompanied by the expression of defense-related genes (i.e. PR1 and Chi2-1). Accumulation of reactive oxygen species (e.g. H2O2 and O2̇̄) and callose was also observed in Arabidopsis. By using degenerate primers designed from the partial amino acid sequences and rapid amplification reactions of cDNA ends, the complete AsES-coding cDNA of 1167 nucleotides was obtained. The deduced amino acid sequence showed significant identity with fungal serine proteinases of the subtilisin family, indicating that AsES is synthesized as a larger precursor containing a 15-residue secretory signal peptide and a 90-residue peptidase inhibitor I9 domain in addition to the 283-residue mature protein. AsES exhibited proteolytic activity in vitro, and its resistance eliciting activity was eliminated when inhibited with PMSF, suggesting that its proteolytic activity is required to induce the defense response. This is, to our knowledge, the first report of a fungal subtilisin that shows eliciting activity in plants. This finding could contribute to develop disease biocontrol strategies in plants by activating its innate immunity.