964 resultados para Adaptive Backstepping Controller
Resumo:
A generic architecture for implementing a QR array processor in silicon is presented. This improves on previous research by considerably simplifying the derivation of timing schedules for a QR system implemented as a folded linear array, where account has to be taken of processor cell latency and timing at the detailed circuit level. The architecture and scheduling derived have been used to create a generator for the rapid design of System-on-a-Chip (SoC) cores for QR decomposition. This is demonstrated through the design of a single-chip architecture for implementing an adaptive beamformer for radar applications. Published as IEEE Trans Circuits and Systems Part II, Analog and Digital Signal Processing, April 2003 NOT Express Briefs. Parts 1 and II of Journal reorganised since then into Regular Papers and Express briefs
Resumo:
In an adaptive equaliser, the time lag is an important parameter that significantly influences the performance. Only with the optimum time lag that corresponds to the best minimum-mean-square-error (MMSE) performance, can there be best use of the available resources. Many designs, however, choose the time lag either based on preassumption of the channel or simply based on average experience. The relation between the MMSE performance and the time lag is investigated using a new interpretation of the MMSE equaliser, and then a novel adaptive time lag algorithm is proposed based on gradient search. The proposed algorithm can converge to the optimum time lag in the mean and is verified by the numerical simulations provided.
Resumo:
A new algorithm for training of nonlinear optimal neuro-controllers (in the form of the model-free, action-dependent, adaptive critic paradigm). Overcomes problems with existing stochastic backpropagation training: need for data storage, parameter shadowing and poor convergence, offering significant benefits for online applications.