938 resultados para AROMATIC DISULFIDE OLIGOMERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Bacillus thuringiensis Cry toxins bind with different insect midgut proteins leading to toxin oligomerization, membrane insertion and pore formation. However, different Cry toxins had been shown to readily form high molecular weight oligomers or aggregates in solution in the absence of receptor interaction. The role of Cry oligomers formed in solution remains uncertain. The Cry9A proteins show high toxicity against different Lepidoptera, and no-cross resistance with Cry1A. Results: Cry9Aa655 protein formed oligomers easily in solution mediated by disulfide bonds, according to SDS-PAGE analysis under non-reducing and reducing conditions. However, oligomerization is not observed if Cry9Aa655 is activated with trypsin, suggesting that cysteine residues, C14 and C16, located in the N-terminal end that is processed during activation participate in this oligomerization. To determine the role of these residues on oligomerization and in toxicity single and double alanine substitution were constructed. In contrast to single C14A and C16A mutants, the double C14A–C16A mutant did not form oligomers in solution. Toxicity assays against Plutella xylostella showed that the C14A–C16A mutant had a similar insecticidal activity as the Cry9Aa655 protein indicating the oligomers of Cry9Aa formed in solution in the absence of receptor binding are not related with toxicity. Conclusions: The aggregation of Cry9Aa655 polypeptides was mediated by disulfide bonds. Cry9Aa655 C14 and C16C are involved in oligomerization in solution. These aggregate forms are not related to the mode of action of Cry9Aa leading to toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is global concern that soil and water were contaminated with organic substances such as BTEX (benzene) (B), toluene (T) and xylene (x) .The presence of excessive amounts of BTEX in aqueous surroundings may have a greatly adverse impact on water quality and thus endanger public health and welfare. Carbon nanotubes (CNT) have aroused widespread attention as a new type of adsorptions due to their outstanding ability for the removal of various inorganic and organic pollutants from large volume of wastewater. Due to variety of adsorbent and their ability to adsorb pollutant, it is possible to reduce expenses and completely omit pollutant. In this CNT is used as a new adsorbent for removal pollutant such as benzene, toluene, and xylene. The result in the area of adsorbing benzene, toluene, and xylene is as follows: the changes of pH don’t affect the capacity of adsorption and the greatest amount of adsorption occurs in pH. The greatest amount of adsorption occurs when using 0.01gr CNT oxidized. Comparing CNT with CNT oxidized in term of adsorption capacity, it is proved that the adsorption capacity of CNT oxidized is much more than CNT. The result of comparing the percentage of adsorption of mentioned elements (B, X, T) is as follows; the amount of adsorption of xylene is more than toluene and toluene is more than benzene. It should be mentioned that in this research the percentage of adsorption to measure is between to 70-80.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants frequently suffer contaminations by toxigenic fungi, and their mycotoxins can be produced throughout growth, harvest, drying and storage periods. The objective of this work was to validate a method for detection of toxins in medicinal and aromatic plants, through a fast and highly sensitive method, optimizing the joint co-extraction of aflatoxins (AF: AFB1, AFB2, AFG1 and AFG2) and ochratoxin A (OTA) by using Aloysia citrodora P. (lemon verbena) as a case study. For optimization purposes, samples were spiked (n=3) with standard solutions of a mix of the four AFs and OTA at 10 ng/g for AFB1, AFG1 and OTA, and at 6 ng/g of AFB2 and AFG2. Several extraction procedures were tested: i) ultrasound-assisted extraction in sodium chloride and methanol/water (80:20, v/v) [(OTA+AFs)1]; ii) maceration in methanol/1% NaHCO3 (70:30, v/v) [(OTA+AFs)2]; iii) maceration in methanol/1% NaHCO3 (70:30, v/v) (OTA1); and iv) maceration in sodium chloride and methanol/water (80:20, v/v) (AF1). AF and OTA were purified using the mycotoxin-specific immunoaffinity columns AflaTest WB and OchraTest WB (VICAM), respectively. Separation was performed with a Merck Chromolith Performance C18 column (100 x 4.6 mm) by reverse-phase HPLC coupled to a fluorescence detector (FLD) and a photochemical derivatization system (for AF). The recoveries obtained from the spiked samples showed that the single-extraction methods (OTA1 and AF1) performed better than co-extraction methods. For in-house validation of the selected methods OTA1 and AF1, recovery and precision were determined (n=6). The recovery of OTA for method OTA1 was 81%, and intermediate precision (RSDint) was 1.1%. The recoveries of AFB1, AFB2, AFG1 and AFG2 ranged from 64% to 110% for method AF1, with RSDint lower than 5%. Methods OTA1 and AF1 showed precision and recoveries within the legislated values and were found to be suitable for the extraction of OTA and AF for the matrix under study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Irradiation is being progressively considered as a versatile and effective conservation technique [1]. Based on this premise, our research group has been investigating the effects of different irradiation conditions in several food matrices. Aromatic plants are among the food products that require suitable conservation technologies to expand their use [2]. The effects of irradiation on the four species (Aloysia citrodora, Melissa officinalis, Melittis melissophyllum and Mentha piperita) studied herein were previously evaluated. In the present study, the same species were treated with different doses of electron-beam irradiation (0, 1 and 10 kGy) and several parameters were evaluated. The individual sugars profile was determined by HPLCRI, fatty acids by GC-FID, organic acids by HPLC-PDA and tocopherols by HPLCfluorescence. In general, the evaluated parameters remained practically unchanged, regardless of plant species or the irradiation dose. Regarding the profile of sugars, the major change was a decrease in the content of disaccharides. The most notable variations in organic acids were observed in plant species with the highest content in these molecules, especially the decrease observed in the samples of M. officinalis and M. melissophyllum. Among the tocopherols, the α and β isoforms were more susceptible to radiation, while the application of 1 kGy tended to increase the levels of tocopherols in Aloysia citrodora, while 10 kGy had the same effect on M. melissophyllum. M. piperita sample showed the highest levels of tocopherols, regardless of the dose applied. Finally, with regard to the fatty acids content, the irradiated samples showed higher percentages of monounsaturated fatty acids than the control samples. In general, analyzing the results taking into account the effects described, it can be concluded that the application of irradiation with electron beam at doses 1 and 10 kGy is an effective way to retain biomolecules profile of the studied species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbal therapy is characterized by the use of aromatic and medicinal plants (AMP) in different pharmaceutical forms for therapeutic purposes. The present study aims to characterize the use of AMP, drugs and herbal products in Bragança city. For this, a cross-sectional study was conducted through application of a questionnaire to 404 subjects of both gender and aged between 18 and 89 years. AMP were therapeutically used by 53.7% mainly due “to be natural” (43.9%) while 33.8% use drugs and/ or herbal products mainly “because it is good for health” (53.5%). The AMP most used were Cidreira (n=149) and Camomila (n=117) and concerning drugs and/ or herbal products Valdispert® (n=48) and Daflon® 500 (n=41) were the most reported. Overall, the reported uses of AMP, drugs and herbal products were correct, according to the reported in literature. The use of AMP is motivated by self-knowledge (55.4%) while drugs and/ or herbal products are used mostly by medical prescription (44.1%). AMP were obtained by own cultivation (44.1%) and drug and/ or herbal products in pharmacies (89.0%). Of all users, about 90% not combined these products with conventional drugs and it was identified just one potential occurrence of drug interactions related with the use of Hipericão. The occurrence of adverse effects was noted after the use of AMP Sene (11.8%), Hipericão (9.1%) and Ginkgo Biloba (8.3%). The use of these products is a common practice among the residents of Bragança city, which use a wide diversity of AMP and plant-based products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The design of molecular sensors plays a very important role within nanotechnology and especially in the development of different devices for biomedical applications. Biosensors can be classified according to various criteria such as the type of interaction established between the recognition element and the analyte or the type of signal detection from the analyte (transduction). When Raman spectroscopy is used as an optical transduction technique the variations in the Raman signal due to the physical or chemical interaction between the analyte and the recognition element has to be detected. Therefore any significant improvement in the amplification of the optical sensor signal represents a breakthrough in the design of molecular sensors. In this sense, Surface-Enhanced Raman Spectroscopy (SERS) involves an enormous enhancement of the Raman signal from a molecule in the vicinity of a metal surface. The main objective of this work is to evaluate the effect of a monolayer of graphene oxide (GO) on the distribution of metal nanoparticles (NPs) and on the global SERS enhancement of paminothiophenol (pATP) and 4-mercaptobenzoic acid (4MBA) adsorbed on this substrate. These aromatic bifunctional molecules are able to interact to metal NPs and also they offer the possibility to link with biomolecules. Additionally by decorating Au or Ag NPs on graphene sheets, a coupled EM effect caused by the aggregation of the NPs and strong electronic interactions between Au or Ag NPs and the graphene sheets are considered to be responsible for the significantly enhanced Raman signal of the analytes [1-2]. Since there are increasing needs for methods to conduct reproducible and sensitive Raman measurements, Grapheneenhanced Raman Scattering (GERS) is emerging as an important method [3].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências Veterinárias na especialidade de Sanidade Animal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Polycyclic aromatic hydrocarbons (PaH) are a group of semi-volatile organic compounds composed of 2 or more aromatic rings, generated during incomplete combustion of organic matter. These compounds have been considered as major air pollutants, and also, there is evidence of potential mutagenic and carcinogenic effects in some of them. One of the most important sources of these compounds is industry, and particularly, in processes such as aluminium or coke production, waste incineration and petrochemical and oil reining. This last process is the subject of this article, whose aim is to review the health effects in persons potentially exposed to PAH generated during petroleum reining. Methods: a descriptive review of the available literature was performed, in which PubMed was used as an information source. The following search descriptors were used: refinery, PaH, health, health impact assessment, air pollutants and environmental, as well as their translations in Spanish. Results: eleven articles were included, and most of them correspond to epidemiological studies in which a high incidence of cancer is reported. Conclusions: The reviewed studies concur that there is a signiicant relationship between the presence of oil reineries and the increase of adverse health effects of workers and people living in areas that are close to these industries, particularly, respiratory diseases and cancer. However, it is important to develop studies that simultaneously evaluate the effects on human health and the concentration of these substances in the environment, in order to establish a more direct relationship between the 2 variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes the synthesis, structures and systematic study of the spectroscopic and redox properties of a series of octahedral molybdenum metal cluster complexes with aromatic sulfonate ligands (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] (where X- is Cl-, Br- or I-; OTs- is p-toluenesulfonate and PhSO3 - is benzenesulfonate). All the complexes demonstrated photoluminescence in the red region and an ability to generate singlet oxygen. Notably, the highest quantum yields (>0.6) and narrowest emission bands were found for complexes with a {Mo6I8}4+ cluster core. Moreover, cyclic voltammetric studies revealed that (nBu4N)2[{Mo6X8}(OTs)6] and (nBu4N)2[{Mo6X8}(PhSO3)6] confer enhanced stability towards electrochemical oxidation relative to corresponding starting complexes (nBu4N)2[{Mo6X8}X6].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The production of fine wines in the Sub-middle of the São Francisco River Valley, Northeast of Brazil, is relatively recent, about twenty-five years ago. This region presents different characteristics, with a tropical semiarid climate, in a flat landscape. Presenting high annual average temperature, solar radiation and water in abundance for irrigation, it?s possible the scaling the grape harvests for winemaking throughout the year, allowing to obtain until two harvests per year. Several factors may affect the aromatic compounds in wines, such as viticulture practices, climatic conditions, cultivars and winemaking process. This study aimed to evaluate the aromatic stability of Syrah and Petit Verdot tropical wines elaborated in two different periods in the year. The grapes were harvested in the first and second semesters of 2009, in June and November. The wines were elaborated and then, they were bottled and analyzed in triplicate, thirty days and one year after bottling, by gas chromatography with ionization detector flame (GC-FID), to evaluate the profile and the stability of the aroma compounds. Principal component analysis was applied to discriminate between wine samples and to find the compounds responsible by the variability. The results showed that Syrah and Petit Verdot tropical wines presented different responses, for stability of higher alcohols, esters and carboxylic acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional winegrowing areas are located in temperate climate zones and allow to produce grapes only once per year. Tropical wines have been elaborated in India, Thailand, Venezuela and Brazil and present another kind of viticulture, as compared with countries located in temperate climate zones. Northeast of Brazil started wine production twenty six years ago. This region vines can produce two or three crops per year, depending of the cycle of different cultivars. Harvests can be scaled throughout the year, mainly between May and December, corresponding to the dry season. Red, white, rosé and sparkling wines are being elaborated in the region. The objective of this work was to determine the physico-chemical and aromatic characteristics of some tropical wines elaborated in Northeast of Brazil, with grapes harvested in November 2008. Wines were elaborated using traditional method with control of the alcoholic and malolactic fermentation temperatures, at 25 and 18ºC for red wines, respectively, and at 18ºC for alcoholic fermentation of the white wines. After stabilization and bottling and wines were analyzed to determine physico-chemical characteristics, like alcohol degree, pH, total and volatile acidities, dry extract, sulfur dioxide, total anthocyanin and total phenol index. Aromatic profile was determined by gas chromatography, while 19 esters and 6 superior alcohols were identified. Wines presented different chemical and aromatic characteristics according to different grape cultivars.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years the interest in pyrogenic carbon for agricultural use (biochar, i.e. carbonized biomass for agricultural use) has sharply increased. However biochar contain dangerous compounds such as Polycyclic Aromatic Hydrocarbons (PAHs), many of them potentially carcinogenic and mutagenic. They are organic compounds formed from incomplete combustion of organic materials and are persistent pollutants. Therefore, PAHs concentrations and their dynamic must be evaluated in soils amended with biochar. For this, soil samples were collected in three experimental areas in different years (1, 3, 5 or 6) after the application of 0 (control) or 16 Mg ha-1 of biochar. This is the first report of PAHs persistence up to six years in soil treated with biochar. The biochar application increased total PAHs concentrations up to five years after the application, however the levels have always been an order of magnitude lower the limits of prevention established by International Environmental Agencies for soils. Thus, under the evaluated conditions ,the use of biochar was safe concerning PAHs contamination, besides, after six years of the application, the levels found were similar to the control treatment, making it possible to define a safe frequency of application based on the persistence of PAHs in soil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a theoretical study of the multiple oxidation states (1+, 0, 1−, and 2−) of a meso,meso-linked diporphyrin, namely bis[10,15,20-triphenylporphyrinatozinc(II)-5-yl]butadiyne (4), using Time-Dependent Density Functional Theory (TDDFT). The origin of electronic transitions of singlet excited states is discussed in comparison to experimental spectra for the corresponding oxidation states of the close analogue bis{10,15,20-tris[3‘,5‘-di-tert-butylphenyl]porphyrinatozinc(II)-5-yl}butadiyne (3). The latter were measured in previous work under in situ spectroelectrochemical conditions. Excitation energies and orbital compositions of the excited states were obtained for these large delocalized aromatic radicals, which are unique examples of organic mixed-valence systems. The radical cations and anions of butadiyne-bridged diporphyrins such as 3 display characteristic electronic absorption bands in the near-IR region, which have been successfully predicted with use of these computational methods. The radicals are clearly of the “fully delocalized” or Class III type. The key spectral features of the neutral and dianionic states were also reproduced, although due to the large size of these molecules, quantitative agreement of energies with observations is not as good in the blue end of the visible region. The TDDFT calculations are largely in accord with a previous empirical model for the spectra, which was based simplistically on one-electron transitions among the eight key frontier orbitals of the C4 (1,4-butadiyne) linked diporphyrins.