991 resultados para ALKALOPHILIC MICROORGANISMS
Resumo:
The structural organization of microbial mats from the Ebro Delta (Spain) and their accretion and partial lithification processes were explored using scanning electron microscopy in back-scattered electron mode and low-temperature scanning electron microscopy. Two differentiated zones were distinguished in a transverse section of a fragment taken from the mat at a depth of 2.5 mm. The first consisted of an upper layer in which the dominant microorganisms, Microcoleus spp., actively grew in an embedded slack matrix of exopolysaccharides. Microcoleus filaments were oriented parallel to the surface and to each other, with filaments below arranged perpendicularly to one another but without crossing. Most of the minerals present were allochthonous grains of calcium phosphate biocorroded by cyanobacteria. The second zone was below a depth of 1 mm and made up of accretion layers with large deposits of calcium carbonate and smaller amounts of calcium phosphate of biological origin. The predominance of a particular type of mineral precipitation with a characteristic external shape and/or texture within a zone, e.g., sponge-like deposits of calcium phosphate, appears to depend on the taxa of the prevailing microorganisms
Resumo:
Current diagnostic methods in differentiating septic from non-septic arthritis are time-consuming (culture) or have limited sensitivity (Gram stain). Microcalorimetry is a novel method that can rapidly detect microorganisms by their heat production. We investigated the accuracy and time to detection of septic arthritis by using microcalorimetry. Patients older than 18 years of age with acute arthritis of native joints were prospectively included. Synovial fluid was aspirated and investigated by Gram stain, culture and microcalorimetry. The diagnosis of septic arthritis and non-septic arthritis were made by experienced rheumatologists or orthopaedic surgeons. Septic arthritis was diagnosed by considering the finding of acute arthritis together with findings such as positive Gram stain or positive culture of synovial fluid or positive blood culture. The sensitivity and specificity for diagnosing septic arthritis and the time to positivity of microcalorimetry were determined. Of 90 patients (mean age 64 years), nine had septic arthritis, of whom four (44 %) had positive Gram stain, six (67 %) positive synovial fluid culture and four (44 %) had positive blood culture. The sensitivity of microcalorimetry was 89 %, the specificity was 99 % and the mean detection time was 5.0 h (range, 2.2-8.0 h). Microcalorimetry is an accurate and rapid method for the diagnosis of septic arthritis. It has potential to be used in clinical practice in diagnosing septic arthritis.
Resumo:
The genomes of two hemiascomycetous yeasts (Saccharomyces cerevisiae and Candida albicans) and one archiascomycete (Schizosaccharomyces pombe) have been completely sequenced and the genes have been annotated. In addition, the genomes of 13 more Hemiascomycetes have been partially sequenced. The amount of data thus obtained provides information on the evolutionary relationships between yeast species. In addition, the differential genetic characteristics of the microorganisms explain a number of distinctive biological traits. Gene order conservation is observed between phylogenetically close species and is lost in distantly related species, probably due to rearrangements of short regions of DNA. However, gene function is much more conserved along evolution. Compared to S. cerevisiae and S. pombe, C. albicans has a larger number of specific genes, i.e., genes not found in other organisms, a fact that can account for the biological characteristics of this pathogenic dimorphic yeast which is able to colonize a large variety of environments.
Resumo:
Blood culture remains the best approach to identify the incriminating microorganisms when a bloodstream infection is suspected, and to guarantee that the antimicrobial treatment is adequate. Major improvements have been made in the last years to increase the sensitivity and specificity and to reduce the time to identification of microorganisms recovered from blood cultures. Among other factors, the introduction in clinical microbiology laboratories of the matrix-assisted laser desorption ionization time-of-flight mass spectrometry technology revolutionized the identification of microorganisms whereas the introduction of nucleic-acid-based methods, such as DNA hybridization or rapid PCR-based test, significantly reduce the time to results. Together with traditional antimicrobial susceptibility testing, new rapid methods for the detection of resistance mechanisms respond to major epidemiological concerns such as methicillin-resistant Staphylococcus aureus, extended-spectrum β-lactamase or carbapenemases. This review presents and discusses the recent developments in microbial diagnosis of bloodstream infections based on blood cultures.
Resumo:
A thermally controlled transport device was designed and tested. As hot food needs to be transported at temperatures between 60 and 70ºC in order to avoid contamination by microorganisms, the use of Molecular Alloy Phase Change Materials (MAPCM) can lead to improvements in this field of application. A heat transfer numerical simulation of the box used for transporting the food was conducted. Despite obvious simplifications, a good agreement between numerical simulation and experimental results was obtained. Furthermore, we compared our experimental results with those from other experiments related to the transport of hot food. Here, pizza is taken as the example, and it is shown that delivering time can be increased three-fold.
Resumo:
Soybean (Glycine max. L.) nodular senescence results in the dismantling of the peribacteroid membrane (PBM) and in an increase of soybean isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (MS; EC 4.1.3.2) mRNA and protein levels. This suggests that in senescing soybean nodular cells, the specific glyoxylate cycle enzyme activities might be induced to reallocate carbon obtained from the PBM degradation. In order to evaluate as well the carbon metabolism of the nitrogen-fixing Bradyrhizobium japonicum endosymbiotic bacteroids during nodular senescence, their glyoxylate cycle activities were also investigated. To this end, partial DNA sequences were isolated from their icl and ms genes, but the corresponding mRNAs were not detected in the microorganisms. It was also observed that the bacteroid ICL and MS activities were negligible during nodular senescence. This suggests that glyoxylate cycle activities are not reinitiated in the bacteroids under these physiological conditions. In case the microorganisms nevertheless feed on the PBM degradation products, this might occur via the citric acid cycle exclusively.
Resumo:
Työn tavoitteena oli kehittää mikro-organismeja kestävä suoli eli makkarankuori. Työ suoritettiin modifioimalla regeneroitua selluloosaa. Modifiointiliuoksena käytettiin etikkahapon ja etikkahappoanhydridin seosta, johon lisättiin rikkihappoa katalyytiksi. Työssä etsittiin parasta yhdistelmää, joka koostui modifiointiradannopeudesta, modifiointiliuoskoostumuksesta ja erilaisista modifiointimenetelmistä. Kirjallisuusosassa käsiteltiin yleisesti asetaattikalvoja, niiden valmistusta ja ominaisuuksia. Lisäksi perehdyttiin entsyymin ominaisuuksiin ja toimintaan yleisesti. Entsyymeistä yksi otettiin lähempään tarkasteluun. Kokeissa regeneroitua selluloosaa modifioitiin liuoksessa, jonka koostumusta muunneltiin. Kokeissa oli kolme erilaista modifiointimenetelmää, joissa käytettiin neljää modifiointiliuoskoostumusta ja kolmea modifiointinopeutta. Mittauksissa tutkittiin modifioinnin vaikutusta suoliin verrattuna normaaleihin suoliin. Suolille tehtiin sekä mekaanisia että kemiallisia testejä. Kemiallisista testeistä tärkein oli testi, jossa modifioitu suoli altistettiin mikro-organismille. Tulosten perusteella valittiin paras menetelmä. Työssä havaittiin yhden menetelmän olevan muita paljon parempi. Tällä menetelmällä suoritettiin toistokokeita, jotka varmistivat jo saatuja tuloksia. Liuoskoostumusten välillä ei ollut suuria eroja, mutta kuitenkin niistä yksi osoittautui parhaimmaksi. Nopeutta oli vaikeampi määrittää, mutta siitäkin saatiin määritettyä tietty haarukka, jossa reaktio oli tehokkain.
Resumo:
The attachment of Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 28213 onto six different materials used to manufacture dental implant abutments was quantitatively determined after 2 and 24 h of contact between the materials and the bacterial cultures. The materials were topographically characterized and their wettability determined, with both parameters subsequently related to bacterial adhesion. Atomic force microscopy, interferometry, and contact angle measurement were used to characterize the materials" surfaces. The results showed that neither roughness nor nano-roughness greatly influenced bacterial attachment whereas wettability strongly correlated with adhesion. After 2 h the degree of E. coli attachment markedly differed depending on the material whereas similar differences were not observed for S. aureus, which yielded consistently higher counts of adhered cells. Nevertheless, after 24 h the adhesion of the two species to the different test materials no longer significantly differed, although on all surfaces the numbers of finally adhered E. coli were higher than those of S. aureus
Resumo:
Objetivo: Identificar factores de riesgo para el síndrome de boca ardiente (SBA) a través de estudio de casos y controles. Material y métodos: Se realizó análisis cuantitativo del flujo salival total en reposo y estimulado; se registraron la xerostomía subjetiva, el consumo de medicamentos y los estados psicológicos de ansiedad y depresión en 40 pacientes con SBA y 40 controles. Resultados: El análisis ANOVA mostró diferencias significativas en las medias del número de medicamentos/día, número de medicamentos xerostomizantes/día, xerostomía subjetiva, ansiedad y depresión, entre los grupos estudiados. No se observaron diferencias significativas en las tasas de flujo salival en reposo y estimulado. El análisis de asociación Odds ratio determinó asociación del SBA con xerostomía y con el consumo de hipotensores y diuréticos. Conclusiones: Según los resultados de este estudio, se puede afirmar que el consumo de hipotensores y diuréticos fue un factor de riesgo para el padecimiento del SBA. La función de las glándulas salivales en los pacientes con SBA no está deteriorada.
Resumo:
Soybean (Glycine max. L.) nodular senescence results in the dismantling of the peribacteroid membrane (PBM) and in an increase of soybean isocitrate lyase (ICL; EC 4.1.3.1) and malate synthase (MS; EC 4.1.3.2) mRNA and protein levels. This suggests that in senescing soybean nodular cells, the specific glyoxylate cycle enzyme activities might be induced to reallocate carbon obtained from the PBM degradation. In order to evaluate as well the carbon metabolism of the nitrogen-fixing Bradyrhizobium japonicum endosymbiotic bacteroids during nodular senescence, their glyoxylate cycle activities were also investigated. To this end, partial DNA sequences were isolated from their icl and ms genes, but the corresponding mRNAs were not detected in the microorganisms. It was also observed that the bacteroid ICL and MS activities were negligible during nodular senescence. This suggests that glyoxylate cycle activities are not reinitiated in the bacteroids under these physiological conditions. In case the microorganisms nevertheless feed on the PBM degradation products, this might occur via the citric acid cycle exclusively.
Resumo:
Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa's ability to colonize the GI tract but does decrease P. aeruginosa's cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease.
Resumo:
Most fishes produce free-living embryos that are exposed to environmental stressors immediately following fertilization, including pathogenic microorganisms. Initial immune protection of embryos involves the chorion, as a protective barrier, and maternally-allocated antimicrobial compounds. At later developmental stages, host-genetic effects influence susceptibility and tolerance, suggesting a direct interaction between embryo genes and pathogens. So far, only a few host genes could be identified that correlate with embryonic survival under pathogen stress in salmonids. Here, we utilized high-throughput RNA-sequencing in order to describe the transcriptional response of a non-model fish, the Alpine whitefish Coregonus palaea, to infection, both in terms of host genes that are likely manipulated by the pathogen, and those involved in an early putative immune response. Embryos were produced in vitro, raised individually, and exposed at the late-eyed stage to a virulent strain of the opportunistic fish pathogen Pseudomonas fluorescens. The pseudomonad increased embryonic mortality and affected gene expression substantially. For example, essential, upregulated metabolic pathways in embryos under pathogen stress included ion binding pathways, aminoacyl-tRNA-biosynthesis, and the production of arginine and proline, most probably mediated by the pathogen for its proliferation. Most prominently downregulated transcripts comprised the biosynthesis of unsaturated fatty acids, the citrate cycle, and various isoforms of b-cell transcription factors. These factors have been shown to play a significant role in host blood cell differentiation and renewal. With regard to specific immune functions, differentially expressed transcripts mapped to the complement cascade, MHC class I and II, TNF-alpha, and T-cell differentiation proteins. The results of this study reveal insights into how P. fluorescens impairs the development of whitefish embryos and set a foundation for future studies investigating host pathogen interactions in fish embryos.
Resumo:
The increase in seafood production, especially in mariculture worldwide, has brought out the need of continued monitoring of shellfish production areas in order to ensure safety to human consumption. The purpose of this research was to evaluate pathogenic protozoa, viruses and bacteria contamination in oysters before and after UV depuration procedure, in brackish waters at all stages of cultivation and treatment steps and to enumerate microbiological indicators of fecal contamination from production site up to depuration site in an oyster cooperative located at the Southeastern estuarine area of Brazil. Oysters and brackish water were collected monthly from September 2009 to November 2010. Four sampling sites were selected for enteropathogens analysis: site 1- oyster growth, site 2- catchment water (before UV depuration procedure), site 3 - filtration stage of water treatment (only for protozoa analysis) and site 4- oyster's depuration tank. Three microbiological indicators ! were examined at sites 1, 2 and 4. The following pathogenic microorganisms were searched: Giardia cysts, Cryptosporidium oocysts, Human Adenovirus (HAdV), Hepatitis A virus (HAV), Human Norovirus (HnoV) (genogroups I and II), JC strain Polyomavirus (JCPyV) and Salmonella sp. Analysis consisted of molecular detection (qPCR) for viruses (oysters and water samples); immunomagnetic separation followed by direct immunofluorescence assay for Cryptosporidium oocysts and Giardia cysts and also molecular detection (PCR) for the latter (oysters and water samples); commercial kit (Reveal-Neogee (R)) for Salmonella analysis (oysters). Giardia was the most prevalent pathogen in all sites where it was detected: 36.3%, 18.1%, 36.3% and 27.2% of water from sites 1, 2, 3 and 4 respectively; 36.3% of oysters from site 1 and 54.5% of depurated oysters were harboring Giardia cysts. The huge majority of contaminated samples were classified as Giardia duodenalis. HAdv was detected in water and o! ysters from growth site and HnoV GI in two batches of oysters ! (site 1) in huge concentrations (2.11 x 10(13), 3.10 x 10(12) gc/g). In depuration tank site, Salmonella sp., HAV (4.84 x 10(3)) and HnoV GII (7.97 x 10(14)) were detected once in different batches of oysters. Cryptosporidium spp. oocysts were present in 9.0% of water samples from site four. These results reflect the contamination of oysters even when UV depuration procedures are employed in this shellfish treatment plant. Moreover, the molecular comprehension of the sources of contamination is necessary to develop an efficient management strategy allied to shellfish treatment improvement to prevent foodborne illnesses. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We present here the characterization of a new gene family, awr, found in all sequenced Ralstonia solanacearum strains and in other bacterial pathogens. We demonstrate that the five paralogues in strain GMI1000 encode type III-secreted effectors and that deletion of all awr genes severely impairs its capacity to multiply in natural host plants. Complementation studies show that the AWR (alanine-tryptophanarginine tryad) effectors display some functional redundancy, although AWR2 is the major contributor to virulence. In contrast, the strain devoid of all awr genes (¿awr1-5) exhibits enhanced pathogenicity on Arabidopsis plants. A gain-of-function approach expressing AWR in Pseudomonas syringae pv. tomato DC3000 proves that this is likely due to effector recognition, because AWR5 and AWR4 restrict growth of this bacterium in Arabidopsis. Transient overexpression of AWR in nonhost tobacco species caused macroscopic cell death to varying extents, which, in the case of AWR5, shows characteristics of a typical hypersensitive response. Our work demonstrates that AWR, which show no similarity to any protein with known function, can specify either virulence or avirulence in the interaction of R. solanacearum with its plant hosts.
Resumo:
Boletus edulis Bull. is one of the most economically and gastronomically valuable fungi worldwide. Sporocarp production normally occurs when symbiotically associated with a number of tree species in stands over 40 years old, but it has also been reported in 3-year-old Cistus ladanifer L. shrubs. Efforts toward the domestication of B. edulis have thus focused on successfully generating C. ladanifer seedlings associated with B. edulis under controlled conditions. Microorganisms have an important role mediating mycorrhizal symbiosis, such as some bacteria species which enhance mycorrhiza formation (mycorrhiza helper bacteria). Thus, in this study, we explored the effect that mycorrhiza helper bacteria have on the efficiency and intensity of the ectomycorrhizal symbiosis between C. ladanifer and B. edulis. The aim of this work was to optimize an in vitro protocol for the mycorrhizal synthesis of B. edulis with C. ladanifer by testing the effects of fungal culture time and coinoculation with the helper bacteria Pseudomonas fluorescens Migula. The results confirmed successful mycorrhizal synthesis between C. ladanifer and B. edulis. Coinoculation of B. edulis with P. fluorescens doubled within-plant mycorrhization levels although it did not result in an increased number of seedlings colonized with B. edulis mycorrhizae. B. edulis mycelium culture time also increased mycorrhization levels but not the presence of mycorrhizae. These findings bring us closer to controlled B. edulis sporocarp production in plantations.