952 resultados para Épitopes lymphocytes T cytotoxiques
Resumo:
The present paper shows, for the first time, the membrane expression of the dendritic cell maturation marker CD83 on tumor cells from lung cancer patients. CD83 was also detected on freshly cultured fibroblast-like cells from these tissues and on several adherent human tumor cell lines (lung adenocarcinomas P9, A459 and A549, melanomas A375 and C81-61, breast adenocarcinomas SKBR-3 and MCF-7 and colon carcinoma AR42-J), but not in the non-adherent MOT leukemia cell line. CD83 may have immunosuppressive properties and its expression by cancer cells could have a role in facilitating tumor growth.
Resumo:
We have previously demonstrated that mononuclear leukocytes from patients with sickle cell disease (SCD) release higher amounts of superoxide compared with normal controls. The aim of this study was to further study the NADPH oxidase system in these patients by investigating gene expression of NADPH oxidase components, phosphorylation of p47(phox) component, and the release of cytokines related to NADPH oxidase activation in mononuclear leukocytes from patients with SCD. gp91(phox) gene expression was significantly higher in monocytes from SCD patients compared with normal controls (P = 0.036). Monocytes from SCD patients showed higher levels of p47 phox phosphorylation compared with normal controls. INF-gamma release by lymphocytes from SCD patients was significantly higher compared with normal controls, after 48 h culture with phytohemagglutinin (P = 0.02). The release of TNF-alpha by monocytes from SCD patients and normal controls was similar after 24 and 48 h culture with lipopolysaccharide (P > 0.05). We conclude that monocytes from SCD patients show higher levels of gp91(phox) gene expression and p47(phox) phosphorylation, along with increased IFN-gamma release by SCD lymphocytes. These findings help to explain our previous observation showing the increased respiratory burst activity of mononuclear leukocytes from SCD patients and may contribute to inflammation and tissue damage in these patients.
Resumo:
We have previously demonstrated that PAS-1, a 200 kDa protein from Ascaris suum, has a potent immunomodulatory effect on humoral and cell-mediated responses induced by APAS-3 (an allergenic protein from A. suum) or unrelated antigens. In this study, we investigated the mechanisms by which PAS-1 is able to induce this effect on an allergic airway inflammation induced by OVA in mice. C57BL/6 mice were adoptively transferred on day 0 with seven different PAS-1-primed cell populations: PAS-1-primed CD19(+) or B220(+) or CD3(+) or CD4(+) or CD8(+) or CD4(+) CD25) or CD4(+) CD25(+) lymphocytes. These mice were immunized twice with OVA and alum by intraperitoneal route (days 0 and 7) and challenged twice by intranasal route (days 14 and 21). Two days after the last challenge, the airway inflammation was evaluated by antibody levels, cellular migration, eosinophil peroxidase levels, cytokine and eotaxin production, and pulmonary mechanical parameters. Among the adoptively transferred primed lymphocytes, only CD4(+) CD25(+), CD8(+) or the combination of both T cells impaired the production of total IgE and OVA-specific IgE and IgG1 antibodies, eosinophilic airway inflammation, Th2-type cytokines (IL-4, IL-5 and IL-13), eotaxin release and airway hyperreactivity. Moreover, airway recruited cells from CD4(+) CD25(+) and CD8(+) T-cell recipient secreted more IL-10/TGF-beta and IFN-gamma, respectively. Moreover, we found that PAS-1 expands significantly the number of CD4(+) CD25(+) FoxP3(+) and CD8(+) gamma delta TCR(+) cells. In conclusion, these findings demonstrate that the immunomodulatory effect of PAS-1 is mediated by these T-cell subsets.
Resumo:
Although regulation of CXCR3 and CCR4 is related to Th1 and Th2 differentiation, respectively, many CXCR3(+) and CCR4(+) cells do not express IFN-gamma and/or IL-4, suggesting that the chemokine receptor genes might be inducible by mechanisms that are lineage-independent. We investigated the regulation of CXCR3 versus IFNG, and CCR4 versus IL4 in human CD4(+) T cells by analyzing modifications of histone H3. In naive cord-blood cells, under nonpolarizing conditions not inducing IL4, CCR4 was induced to high levels without many of the activation-associated changes in promoter histone H3 found for both IL4 and CCR4 in Th2 cells. Importantly, CCR4 expression was stable in Th2 cells, but fell in nonpolarized cells after the cells were rested; this decline could be reversed by increasing histone acetylation using sodium butyrate. Patterns of histone H3 modifications in CXCR3(+) CCR4(-) and CXCR3(-) CCR4(+) CD4(+) T-cell subsets from adult blood matched those in cells cultured under polarizing conditions in vitro. Our data show that high-level lineage-independent induction of CCR4 can occur following T-cell activation without accessibility-associated changes in histone H3, but that without such changes expression is transient rather than persistent.
Resumo:
PURPOSE. Interleukin (IL)-17, which is responsible for the initial influx of leukocytes into the target tissue, was recently described as the main cytokine involved in autoimmune diseases. Vogt-Koyanagi-Harada (VKH) syndrome is a significant cause of noninfectious blindness in the world. Herein the authors aimed at unraveling the involvement of IL-17 in VKH and in experimental autoimmune uveitis, focusing on the signaling pathways involved in IL-17 synthesis. METHODS. Mice were immunized with 161-180 peptide and pertussis toxin. Draining lymph node cells, harvested 21 days after immunization, were cultured in the presence or absence of p38 alpha mitogen-activated protein kinase (MAPK) inhibitor (SB203580) and assayed for cytokine production and quantification of CD4(+)IL-17(+) cells. Mice received intraocular injections of SB203580, and disease severity was evaluated by histologic examination of the enucleated eyes at day 21. CD4(+) lymphocytes from MSK-1/2-deficient mice, human CD4(+) cells silenced with MSK1 siRNA, or peripheral blood mononuclear cells (PBMCs) from VKH patients were cultured in the presence or absence of p38 alpha MAPK inhibitor and then assayed for IL-17, IFN-gamma, and IL-4 production. RESULTS. The inhibition of p38 alpha MAPK fully blocked the synthesis of IL-17 by PBMCs from VKH patients and lymphocytes from EAU mice. The absence of the msk1/2 gene resulted in failure to produce IL-17 by murine and human lymphocytes. Interestingly, intraocular injections of SB203580 in EAU mice did not suppress development of the disease. CONCLUSIONS. These data show that p38 alpha MAPK-MSK1/2 is involved in the control of IL-17 synthesis by CD4(+) T cells and that inhibition of p38 alpha MAPK in vitro suppresses IL-17 synthesis but that inhibition of this kinase in vivo did not protect from EAU. (Invest Ophthalmol Vis Sci. 2010;51:3567-3574) DOI: 10.1167/iovs.09-4393
Resumo:
Over the past 20 y, the hormone melatonin was found to be produced in extrapineal sites, including cells of the immune system. Despite the increasing data regarding the biological effects of melatonin on the regulation of the immune system, the effect of this molecule on T cell survival remains largely unknown. Activation-induced cell death plays a critical role in the maintenance of the homeostasis of the immune system by eliminating self-reactive or chronically stimulated T cells. Because activated T cells not only synthesize melatonin but also respond to it, we investigated whether melatonin could modulate activation-induced cell death. We found that melatonin protects human and murine CD4(+) T cells from apoptosis by inhibiting CD95 ligand mRNA and protein upregulation in response to TCR/CD3 stimulation. This inhibition is a result of the interference with calmodulin/calcineurin activation of NFAT that prevents the translocation of NFAT to the nucleus. Accordingly, melatonin has no effect on T cells transfected with a constitutively active form of NFAT capable of migrating to the nucleus and transactivating target genes in the absence of calcineurin activity. Our results revealed a novel biochemical pathway that regulates the expression of CD95 ligand and potentially other downstream targets of NFAT activation. The Journal of Immunology, 2010, 184: 3487-3494.
Resumo:
Monocytes/macrophages and lymphocytes have a key role in the pathogenesis of atherosclerosis through the production of inflammatory and anti-inflammatory cytokines. We evaluated mRNA expression and protein production of CCL2, CXCL8, CXCL9, CXCL10, IFN-gamma and IL-10 in vitro as well as the expression of the CCR2 and CXCR3 receptors in peripheral blood mononuclear cells (PBMCs) of patients with coronary artery disease (CAD) and healthy controls in the presence or absence of oxidized LDL (oxLDL). Patients with CAD showed higher constitutive expression of CCL2, CXCL8, CXCL9, CXCL10 and IFN-gamma mRNA and, after stimulation with oxLDL, higher expression of CCL2 and CXCL8 mRNA than the control group. We also detected higher levels of CCL2 and CXCL8 in supernatants of oxLDL-stimulated PBMCs from CAD patients than in corresponding supernatants from controls. Patients with CAD had a higher percentage of constitutive CCR2(+) and CXCR3(+) cells after stimulation with oxLDL. Among CAD patients, the main differences between the stable (SA) and unstable angina (UA) groups were lower IL-10 mRNA production in the latter group. Altogether, our data suggest that PBMCs from CAD patients are able to produce higher concentrations of chemokines and cytokines involved in the regulation of monocyte and lymphocyte migration and retention in atherosclerotic lesions. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
To study the role of TLR2 in a experimental model of chronic pulmonary infection, TLR2-deficient and wild-type mice were intratracheally infected with Paracoccidioides brasiliensis, a primary fungal pathogen. Compared with control, TLR2(-/-) mice developed a less severe pulmonary infection and decreased NO synthesis. Equivalent results were detected with in vitro-infected macrophages. Unexpectedly, despite the differences in fungal loads both mouse strains showed equivalent survival times and severe pulmonary inflammatory reactions. Studies on lung-infiltrating leukocytes of TLR2(-/-) mice demonstrated an increased presence of polymorphonuclear neutrophils that control fungal loads but were associated with diminished numbers of activated CD4(+) and CD8(+) T lymphocytes. TLR2 deficiency leads to minor differences in the levels of pulmonary type 1 and type 2 cytokines, but results in increased production of KC, a CXC chemokine involved in neutrophils chemotaxis, as well as TGF-beta, IL-6, IL-23, and IL-17 skewing T cell immunity to a Th17 pattern. In addition, the preferential Th17 immunity of TLR2(-/-) mice was associated with impaired expansion of regulatory CD4(+)CD25(+)FoxP3(+) T cells. This is the first study to show that TLR2 activation controls innate and adaptive immunity to P. brasiliensis infection. TLR2 deficiency results in increased Th17 immunity associated with diminished expansion of regulatory T cells and increased lung pathology due to unrestrained inflammatory reactions. The Journal of Immunology, 2009, 183: 1279-1290.
Resumo:
Introduction: Tim-3 is a Th1 lymphocytes membrane protein with inhibitory function. Its ligand, galectin-9, was recently identified and it is expressed in some lymphocyte subpopulation. In addition, endothelial cells and fibroblasts can also express galectin-9 according to the local cytokine milieu. Both molecules can act as important regulatory tools in the immune system. Aim: Evaluate the expression of these immunoregulatory molecules inside kidney allografts during acute rejection episodes. Methods: By using a quantitative polymerase chain reaction assay, we measured the levels of messenger RNA (mRNA) for galectin-9 and Tim-3 in 21 samples obtained at allograft nephrectomy. Five samples received the histological diagnosis of acute non-vascular rejection (ANVR), twelve of acute vascular rejection (AVR), and five of loss of non-immune cause (LNIC; as control). As cytolytic response markers we measured mRNA levels of granzyme B, interferon-gamma and perforin. The statistic analysis was performed using one way analysis of variance (ANOVA) and Pearson correlation. Results: The mean levels of Tim-3 mRNA expression were 13.99 +/- 6.99 for LNIC, 48.13 +/- 54.47 for RACNV and 238.63 +/- 333.14 for RAV (p = 0.004). For galectin-9, the mean values were 0.57 +/- 0.49 for LNIC, 0.66 +/- 0.36 for RACNV and 2.34 +/- 1.62 for RAV (p = 0.006). Furthermore, there was a positive correlation between both molecules (r = 0.526, p = 0.016). Also. granzyme B, perforin and interferon-gamma mRNA expression were different among the three groups. Conclusion: Messenger RNA level expressions of all the studied molecules were higher inside allografts with more severe rejection. Moreover, there was a positive correlation between galectin-9 and Tim-3 mRNA levels. The simultaneous expression of galectin-9 and Tim-3 may indicate an immunoregulatory function, during the ongoing cytotoxic response. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Renal ischemia and reperfusion injury (IRI) is considered an inflammatory syndrome. To move forward in its pathogenesis, we exploited the role of several cytokines on renal damages triggered by IRI. Specifically to evaluate the role of Th1 immune profile in this system, IL-12, IFN-gamma, and IFN-gamma/IL-12 deficient (KO) mice on C57BL/6 background and their controls were subjected to IRI. In each group, blood and kidney samples were harvested. Renal function was evaluated by serum creatinine and renal morphometric analyses. Gene expression of IL-6 and HO-1 were also investigated by Q-PCR. IFN-gamma KO animals presented the highest impairment in renal function compared to controls. Conversely, IL-12 KO animals were absolutely protected and, in a lesser extent, IFN-gamma/IL-12 KO double knockout was also protected from IRI. Gene expression analyses showed higher expression of HO-1, a cytoprotective gene, and IL-6, a pro-inflammatory cytokine, in IFN-gamma deficient animals subjected to IRI. Our results confirm that Th1 related cytokines such as IL-12 and IFN-gamma are critically involved in renal ischemia and reperfusion injury. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Background & aim: To compare the effect of fish oil-based (FO) lipid emulsions (LE) for parenteral administration with standard LE and a new FO containing LE composed of four different oils on the antigen presentation and inflammatory variables. Methods: Phytohemagglutinin (PHA) activated human mononuclear leukocytes were cultured with different LE - Control: without LE; SO: soybean oil; SO/FO: soybean and FO (4:1); MCT/SO: medium chain triglycerides and SO (1:1); MCT/SO/FO: MCT/SO and FO (4:1) and SMOF: a new LE containing FO. Cytokine production was evaluated by ELISA, the expression of antigen-presenting and co-stimulatory surface molecules were analyzed by flow cytometry and lymphocyte proliferation was assessed by H(3)-Thymidine incorporation, after tetanus toxoid-induced activation. Results: All LE decreased the HLA-DR and increased CD28 and CD152 expression on monocytes/macrophages and lymphocytes surface (p < 0.05). SO/FO and MCT/SO/FO decreased lymphocyte proliferation (p<0.05). All LE decreased IL-2 product ion, but this effect was enhanced with MCT/SO/FO and SMOF (p < 0.05). MCT/SOTO decreased IL-6 and increased IL-10, whereas SO had the opposite effect (p < 0.05). Conclusion: FO LE inhibited lymphocyte proliferation and had an anti-inflammatory effect. These effects seem to be enhanced when FO is mixed with MCT/SO. SMOF had a neutral impact on lymphocyte proliferation and IL-6 and IL-10 production.
Resumo:
Ischemia reperfusion injury (IRI) is a potential contributor for the development of chronic allograft nephropathy. T cells are important mediators of injury, even in the absence of alloantigens. We performed a depletion of TCD4(+)CTLA4(+)Foxp3(+) cells with anti-CD25(PC61), a treatment with anti-GITR (DTA-1) and rat-IgG, followed by 45 min of ischemia and 24/72 h of reperfusion, and then analyzed blood urea, kidney histopathology and gene expression in kidneys by QReal Time PCR. After 24 h of reperfusion, depletion of TCD4(+)CTLA4(+)Foxp3(+) cells reached 30.3%(spleen) and 67.8%(lymph nodes). 72 h after reperfusion depletion reached 43.1%(spleen) and 90.22%(lymph nodes) and depleted animals presented with significantly poorer renal function, while DTA-1 (anti-GITR)-treated ones showed a significant protection, all compared to serum urea from control group (IgG: 150.10 +/- 50.04; PC61: 187.23 +/- 31.38; DTA-1: 64.53 +/- 25.65, mg/dL, p<0.05). These data were corroborated by histopathology. We observed an increase of HO-1 expression in animals treated with DTA-1 at 72 h of reperfusion with significant differences. Thus, our results suggest that PC61 (anti-CD25) mAb treatment is deleterious, while DTA-1 (anti-GITR) mAb treatment presents a protective role in the renal IRI, indicating that some regulatory populations of T cells might have a role in IRI. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Hepatocyte growth factor (HGF) is overexpressed after acute kidney injury (AKI). The aim of this study was to evaluate the role of endogenous HGF in the progression of the inflammatory response in glycerol-induced AKI (Gly-AKI) in rats. Methods: Renal and systemic HGF expressions were evaluated during the development of Gly-AKI. Subsequently, the blockade of endogenous HGF was analyzed in rats treated with anti-HGF antibody concomitant to glycerol injection. Apoptosis, cell infiltration and chemokine and cytokine profiles were investigated. Results: We detected an early peak of renal and plasma HGF protein expressions 3 h after glycerol injection. The pharmacological blockade of the endogenous HGF exacerbated the renal impairment, the tubular apoptosis, the renal expression of monocyte chemoattractant protein-1 and the macrophage, CD43+, CD4+ and CD8+ T lymphocytes renal infiltration. The analysis of mRNA expressions of Th1 (t-bet, TNF-alpha, IL-1 beta) and Th2 (gata-3, IL-4, IL-10) cytokines showed a Th1-polarized response in Gly-AKI rats that was aggravated with the anti-HGF treatment. Conclusion: Endogenous HGF attenuates the renal inflammatory response, leukocyte infiltration and Th1 polarization after glycerol injection. The control of cellular immune response may partly explain the protective effect of endogenous HGF in the development of Gly-AKI. Copyright (C) 2008 S. Karger AG, Basel
Resumo:
Trypanosoma cruzi trypomastigotes continuously shed into the medium plasma membrane fragments sealed as vesicles enriched in glycoproteins of the gp85 and trans-sialidase (TS) superfamily and alpha-galactosyl-containing glycoconjugates. Injection of a vesicle fraction into BALB/c mice prior to T. cruzi infection led to 40% of deaths on the 16th day post-infection and 100% on day 20th whereas 20% of untreated animals survived for more than 30 clays. The vesicle-treated animals developed severe heart pathology, with intense inflammatory reaction and higher number of amastigote nests. Analysis of the inflammatory infiltrates 15 days after infection showed predominance of TCD4(+) lymphocytes and macrophages, but not of TCD8(+) cells, as well as a decrease of areas labeled with anti-iNOS antibodies as compared to the control. Higher levels of IL-4 and IL-10 mRNAs were found in the hearts and higher IL-10 and lower NO levels in splenocytes of vesicles pretreated animals. Treatment of mice with neutralizing anti-IL-10 or anti-IL-4 antibodies precluded the effects of pre-inoculation of membrane vesicles on infection. These results indicate that T. cruzi shed membrane components increase tissue parasitism and inflammation by stimulation of IL-4 and IL-10 synthesis and thus may play a central role in the pathogenesis of Chagas` disease acute phase. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Levels of endothelins are particularly high in the lung, and there is evidence that these peptides are involved in asthma. Asthma is a chronic inflammatory disease associated with lymphocyte infiltration. In the present study, we used a murine model of asthma to investigate the role of endothelins in lymphocyte and eosinophil infiltration into the airway hyperreactivity and mucus secretion. Sensitized C57B1/6 mice were treated with endothelin ET(A) receptor antagonist (BQ123) or endothelin ET(B) receptor antagonist (BQ788) 30 min before an antigen aerosol challenge. After 24 h, dose response curves to methacholine were performed in isolated lungs, FACS analysis of lymphocytes and eosinophil counts were performed in bronchoalveolar lavage fluid and mucus index was determined by histopathology. In sensitized and antigen-challenged mice there is a marked increase in the T CD(4)(+), T CD(8)(+), B220(+), T gamma delta(+) and NK1.1(+) lymphocyte subsets. Treatment with BQ123 further increased these cell populations. The number of eosinophils, airway hyperreactivity and mucus were all reduced by BQ123 treatment. The BQ788 had no significant effect on the parameters analyzed. Treatment with BQ123 reduced the endothelin concentration in lung homogenates, suggesting that endothelins exert a positive feedback on their synthesis. We show here that in murine asthma the ET(A) receptor antagonist up-regulates lymphocyte infiltration and reduces eosinophils, hyperreactivity and mucus. (C) 2008 Elsevier B.V. All rights reserved.