992 resultados para titanio, drogaggio, vanadio, energy gap, band gap, trasmittanza, spettroscopia, ottica, nanoparticelle


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation energies of the oxygen vacancy and titanium interstitial in rutile TiO 2 were calculated by the screened-exchange (sX) hybrid density functional method, which gives a band gap of 3.1 eV, close to the experimental value. The oxygen vacancy gives rise to a gap state lying 0.7 eV below the conduction band edge, whose charge density is localized around the two of three Ti atoms next to the vacancy. The Ti interstitial (Ti int) generates four defect states in the gap, whose unpaired electrons lie on the interstitial and the adjacent Ti 3d orbitals. The formation energy for the neutral oxygen vacancy is 1.9 eV for the O-poor chemical potential. The neutral Ti interstitial has a lower formation energy than the O vacancy under O-poor conditions. This indicates that both the O vacancy and Ti int are relevant for oxygen deficiency in rutile TiO 2 but the O vacancy will dominate under O-rich conditions. This resolves questions about defect localization and defect predominance in the literature. © 2012 American Physical Society.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Temperature-dependent polarized microphotoluminescence measurements of single GaAsAlGaAs core-shell nanowires are used to probe their electronic states. The low-temperature emission from these wires is strongly enhanced compared with that observed in bare GaAs nanowires and is strongly polarized, reflecting the dielectric mismatch between the nanowire and the surrounding air. The temperature-dependent band gap of the nanowires is seen to be somewhat different from that observed in bulk GaAs, and the PL rapidly quenches above 120 K, with an activation energy of 17 meV reflecting the presence of nonradiative defects. © 2006 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The propagation losses in the fundamental mode of a bicone made of highly reflecting metal or a dielectric of large refraction were approximately estimated using Leontovich's boundary condition. A 400-fold concentration of the energy flux density lias been obtained in a cross section which is much smaller than λ. Here, the losses are 2.5% at λ = 550 nm in an Ag bicone and 12% in a semiconductor bicone with a band gap of ≈1 eV for hv larger than the band gap. The excitation efficiency of a bicone has been estimated. While not too large, it can be increased significantly using the method proposed in the present paper. The application of the optical bicone for the multiplication of a semiconductor-laser frequency is discussed. The results obtained are also of use in scanning near-field optical microscopy and in experiments on focusing laser pulses of ultrahigh power. © 2000 Plenum/Kluwer Publishing Corporation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the transition energy levels of the vacancy defects in gallium nitride by means of a hybrid density functional theory approach (DFT). We show that, in contrast to predictions from a recent study on the level of purely local DFT, the inclusion of screened exchange stabilizes the triply positive charge state of the nitrogen vacancy for Fermi energies close to the valence band. On the other hand, the defect levels associated with the negative charge states of the nitrogen vacancy hybridize with the conduction band and turn out to be energetically unfavorable, except for high n-doping. For the gallium vacancy, the increased magnetic splitting between up-spin and down-spin bands due to stronger exchange interactions in sX-LDA pushes the defect levels deeper into the band gap and significantly increases the associated charge transition levels. Based on these results, we propose the ϵ(0| - 1) transition level as an alternative candidate for the yellow luminescence in GaN.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The current study extends our earlier investigation on the real-time dynamics of print gap airflow around a single jetted drop over a moving substrate. In the present work, simulated web press printing was performed using a stationary grey-scale commercial inkjet print head to print full-width block of solid colour images onto a paper substrate with extended print gaps. The resultant printed images exhibit patterns or 'wood-graining' effects which become more prevalent as the relevant Reynolds number (Re) increases. The high-resolution scans of the printed images revealed that the patterns are created by oscillation and coalescence of neighboring printed tracks across the web. The phenomenon could be a result of drop stream perturbations caused by unsteady print gap airflow of the type similar to that observed in the previous study. ©2013; Society for Imaging Science and Technology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We introduce interatomic potentials for tungsten in the bcc crystal phase and its defects within the Gaussian Approximation Potential (GAP) framework, fitted to a database of first principles density functional theory (DFT) calculations. We investigate the performance of a sequence of models based on databases of increasing coverage in configuration space and showcase our strategy of choosing representative small unit cells to train models that predict properties only observable using thousands of atoms. The most comprehensive model is then used to calculate properties of the screw dislocation, including its structure, the Peierls barrier and the energetics of the vacancy-dislocation interaction. All software and raw data are available at www.libatoms.org.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z

Relevância:

40.00% 40.00%

Publicador:

Resumo:

First-principles calculations; ZnO nanofilms; Electronic properties; Quantum effects; NANOBELTS; NANORINGS; WURTZITE; ENERGY Abstract: Using first-principles density-functional calculations, we have studied the structural and electronic properties Of Ultrathin ZnO {0001} nanofilms. The structural parameters, the charge densities, band structures and density of states have been investigated. The results show that there are remarkable charge transfers from Zn to O atoms in the ZOO nanofilms. All the ZOO nanofilms exhibit direct wide band gaps compared with bulk counterpart, and the gap decreases with increased thickness of the nanofilms. The decreased band gap is associated with the weaker ionic bonding within layers and the less localization of electrons in thicker films. A staircase-like density of states occurs at the bottom of conduction band, indicating the two-dimensional quantum effects in ZnO nanofilms.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report that, by linearly polarized pumping of different wavelengths, Kerr transients appear at zero magnetic field only in the case when GaMnAs samples are initialized at 3 K by first applying a 0.8 Tesla field and then returning to zero field. We find that, instead of magnetization precession, the near-band gap excitation induces a coherent out-of-plane turning of magnetization, which shows very long relaxation dynamics with no precession. When photon energy increases, the peak value of the Kerr transient increases, but it decays rapidly to the original slow transient seen under the near-band-gap excitation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The refractive nonlinearities of InAs/GaAs quantum dots under a dc electric field at photon energies above its band gap energy have been studied using the reflection Z-scan technique. The effect of the dc electric field on the nonlinear response of InAs/GaAs quantum dots showed similar linear and quadratic electro-optic effects as in the linear response regime at low fields. This implies that the electro-optic effect in the nonlinear regime is analogous to the response in the linear regime for semiconductor quantum dots. Our experimental results show the potential for voltage tunability in InAs quantum dot-based nonlinear electro-optic devices.