996 resultados para thermal regimes
Resumo:
In this work, the drag reduction by gas injection for power-law fluid flow in stratified and slug flow regimes has been studied. Experimentswere conducted to measure the pressure gradient within air/CMC solutions in a horizontal Plexiglas pipe that had a diameter of 50mm and a length of 30 m. The drag reduction ratio in stratified flow regime was predicted using the two-fluid model. The results showed that the drag reduction should occur over the large range of the liquid holdup when the flow behaviour index remained at the low value. Furthermore, for turbulent gas-laminar liquid stratified flow, the drag reduction by gas injection for Newtonian fluid was more effective than that for shear-shinning fluid, when the dimensionless liquid height remained in the area of high value. The pressure gradient model for a gas/Newtonian liquid slug flow was extended to liquids possessing the Ostwald–de Waele power law model. The proposed model was validated against 340 experimental data point over a wide range of operating conditions, fluid characteristics and pipe diameters. The dimensionless pressure drop predicted was well inside the 20% deviation region for most of the experimental data. These results substantiated the general validity of the model presented for gas/non-Newtonian two-phase slug flows.
Resumo:
The influence of the thermal residual stress on the deformation behavior of a composite has been analyzed with a new micromechanical method. The method is based on secant moduli approximation and a new homogenized effective stress to characterize the plastic state of the matrix. It is found that the generated thermal residual stresses after cooling and their influence on the subsequent deformation behavior depends significantly on the aspect ratio of the inclusions. With prolate inclusions, the presence of thermal residual stresses generate a higher compressive hardening curves of the composite, but it is reversed with oblate inclusions. For particle reinforced composite, thermal residual stresses induce a tensile hardening curve higher than the compressive one and this is in agreement with experimental observations. (C) 1998 Elsevier Science Ltd.
Resumo:
A generalized model for the effective thermal conductivity of porous media is derived based on the fact that statistical self-similarity exists in porous media. The proposed model assumes that porous media consist of two portions: randomly distributed non-touching particles and self-similarly distributed particles contacting each other with resistance. The latter are simulated by Sierpinski carpets with side length L = 13 and cutout size C = 3, 5, 7 and 9, respectively, depending upon the porosity concerned. Recursive formulae are presented and expressed as a function of porosity, ratio of areas, ratio of component thermal conductivities and contact resistance, and there is no empirical constant and every parameter has a clear physical meaning. The model predictions are compared with the existing experimental data, and good agreement is found in a wide range of porosity of 0.14-0.80, and this verifies the validity of the proposed model.
Resumo:
The dependence of microstructure and thermal stability on Fe content of bulk Nd60Al10Ni10Cu20-xFex (0 less than or equal to x less than or equal to 20) metallic glasses is investigated by means of differential scanning calorimetry (DSC), X-ray diffraction (XRD) and high-resolution transmission electron micrograph (HRTEM). All samples exhibit typical amorphous feature under the detect limit of XRD, however, HRTEM results show that the microstructure of Nd60Al10Ni10Cu20-xFex alloys changes from a homogeneous amorphous phase to a composite structure consisting of clusters dispersed in amorphous matrix by increasing Fe content. Dynamic mechanical properties of these alloys with controllable microstructure are studied, expressed via storage modulus, the loss modulus and the mechanical damping. The results reveal that the storage modulus of the alloy without Fe added shows a distinct decrease due to the main a relaxation. This decrease weakens and begins at a higher temperature with increasing Fe content. The mechanism of the effect of Fe addition on the microstructure and thermal stability in this system is discussed in terms of thermodynamics viewpoints. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
An approximate model, a fractal geometry model, for the effective thermal conductivity of three-phase/unsaturated porous media is proposed based on the thermal-electrical analogy technique and on statistical self-similarity of porous media. The proposed thermal conductivity model is expressed as a function of porosity (related to stage n of Sierpinski carpet), ratio of areas, ratio of component thermal conductivities, and saturation. The recursive algorithm for the thermal conductivity by the proposed model is presented and found to be quite simple. The model predictions are compared with the existing measurements. Good agreement is found between the present model predictions and the existing experimental data. This verifies the validity of the proposed model. (C) 2004 American Institute of Physics.
Resumo:
This study deals with the sources of signal distortion of a piezoelectric transducer heated by measured gas flow. These signal distortions originate from both unloading of preload on a piezocrystal because of expansion of a diaphragm in the test apparatus and the pyroelectric effect of a heated piezoelectric crystal. A plastic film on the diaphragm of the transducer can effectively insulate the diaphragm and the piezocrystal within transducer from heating by gas flow, eliminating the sources of distortion. A method for evaluating the thickness of the film is proposed.
Resumo:
Two-dimensional ZnO nanowall networks were grown on ZnO-coated silicon by thermal evaporation at low temperature without catalysts or additives. All of the results from scanning electronic spectroscope, X-ray diffraction and Raman scattering confirmed that the ZnO nanowalls were vertically aligned and c-axis oriented. The room-temperature photoluminescence spectra showed a dominated UV peak at 378 nm, and a much suppressed orange emission centered at similar to 590 nm. This demonstrates fairly good crystal quality and optical properties of the product. A possible three-step, zinc vapor-controlled process was proposed to explain the growth of well-aligned ZnO nanowall networks. The pre-coated ZnO template layer plays a key role during the synthesis process, which guides the growth direction of the synthesized products. (C) 2007 Elsevier B.V. All rights reserved.