989 resultados para sulfur


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dynamic environments of mineralization in Mesozoic Jiaodong gold mine concentrated area can be devided into two types, compressive environment which related to intracontinental collision and extensional environment which related to intracontinental volcanic rift. The altered rock type (Jiaojia type) and quartz vein type (Linglong type) which related to the former one, were discovered for several years, and became the main types of gold deposits in recent years. A new type gold deposit, syn-detachment altered tectonic breccia type gold deposit, such as Pengjiakuang gold deposit and Songjiagou gold deposit has been discovered on the northeastern margin of Jiaolai Basin. In this paper, the new type of gold deposit has been studied in detail. The study area is located at the northeastern boundaries of Jiaolai Basin, and between the Taocun-Jimo Fault and Wji-Haiyang Fault, in the eastern part of the Jiaodong Block. Pengjiakuang gold deposit and Songjiagou gold deposit occur in a arc-shape detachment fault zone between conglomerate of Lower Cretaceous Laiyang Formation and metamorphic complex of Lower Proterozoic Jingshan Group. Regional geological studies show that Kunyuanshan and Queshan granite intrusions and Qingshanian volcanism were formed in different period of lithospheric thinning of East China in Mesozoic. Granite intrusions were formed in compressive environment, while Qingshanian volcanism were formed in extensional environment. They are all related to the detachment of Sulu Orogenic Belt and the sinistral motion of Tanlu Fault. The Pengjiakuang detachment systems which were formed in the the sinistral motion of Tanlu Fault are the important ore-controlling and ore-containing structure. The Pengjiakuang type gold deposit, controlled by detachment structure, was formed before Yanshanian volcanic period concerning with mixture of meteoric water and magmatic water found in fluid inclusions of gold ores. The minerogenetic epoch has been proposed in 90~120Ma. the host rocks have been extensively subjected to pyritization, silicification, sericitization and carbonatization. Individual ore-body has maximum length of 800m, oblique extension of 500~700m and gold grade of 1~43 * 10~(-6). Native gold is disseminated in silicified, phyllic or carbonatized tectonic breccia. Sulfur, carbon and lead isotope studies on gold ores and wall rocks show that the sulfur come from the metamorphic complex of Lower Proterozoic Jingshan Group, carbon comes from the marble in Jingshan Group, while a part of lead comes from the mantle. The mineralizing fluid is rich in Na~+ and Cl~-, but relatively impoverished in K~+ and F~-. According to the date from hydrogen and oxygen isotopic compositions (δ~(18)OH_2O = 0.59%~4.03%, δDH_2O = -89.5%~97.9%), the conclusion can be reached that the mineralizing fluid of Pengjiakuang gold deposit was a kind of mixed hydrothermal solution which was mainly composed of meteoric water and magmatic water. A genetical model has been formulated. Some apparent anomaly features which show low in the central part and high in the both sides corresponding to the gold-bearing structure, were sum up after analying a vast amount of date by prospecting the orebodies using gamma-ray spectrometer, electrogeochemical parameter technique, controlled source audio magnetic telluric (CSAMT) and shallow surface thermometry in Pengjiakuang gold deposit. The location forecasting problem of buried orebodies has been solved according to these features, and the successful rate is very high in well-drilling. The structural geological-geophysical-geochemical prospecting model has been formulated on the base of the study of geological, geophysical and geochemical characteristics of Pengjiakuang type gold deposit, and the optimum combinational process of geophysical and geochemical prospecting techniques has been summed up. A comparative study shows that the Pengjiakuang type gold deposit, the syn-detachment altered tectonic breccia type gold deposit, is different from Jiaojia type gold deposits and Linglong type gold deposits, in Jiaodong Block. In general, if formed under an extensional tectonic condition and located at detachment fault zone along the margin of Mesozoic Jiaolai basin, and the gold mineralization has also close genetic relationship with alkaline magamtism. Being a new type of gold deposit in Jiaodong gold mine concentrated area, it could be potential to explore in the same regions which processed the same ore-forming geological conditions and mineralization informations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanism of gold ore formation in the eastern Tianshan Mountains, Xinjiang Uygur Autonomous Region, that has been dealt with from various aspects, remains unclear. On the basis of investigations of regional geology, ore deposit geology, and microscopic observations of ores and related rocks of the Jinwozi, the 210, and the Mazhuangshan gold ore deposits, this thesis made a systematic research on the microthermometry of gangue quartz-hosted fluid inclusions, gas, liquid ion and rare earth element compositions and hydrogen, oxygen isotope compositions of sulfide- and quartz-hosted fluid inclusions, and sulfur and lead isotope compositions of sulfide ore minerals from the major ores in the three deposits. On the basis of the above synthetic studies, sources of ore-forming fluids and metals, and mechanism of gold ore formation in the region were discussed. Gas compositions of pyrite- and sphalerite-hosted fluid inclusions were first analyzed in this thesis. Compared with gangue quartz-hosted fluid inclusions, the sulfide-hosted ones are richer in gaseous species CO2, CO, and CH4 etc. Both gas and liquid CO2 are commonly observed in fluid inclusions, whereas halite daughter minerals rarely occur. Ore-forming fluids for the three gold ore deposits are characteristically of medium to low temperatures, medium to low salinities, are rich in CO2 and Na+, K+, Cl" ions. Gas covariation diagrams exhibit linear trends that are interpreted as reflecting mixing between the magamtic fluid and meteoric-derived groundwater. Regarding rare earth element compositions, the Jinwozi and the 210 deposits show moderate to strong LREE/HREE fractionations with negative Eu anomalies. However, the Mazhuangshan deposit shows little LREE/HREE fractionation with positive Eu anomalies. Hydrogen and oxygen isotope compositions of pyrite-hosted fluid inclusions that were first analyzed in this thesis indicate the presence of magmatic water. Hydrogen and oxygen isotope compositions of pyrite- and quartz-hosted fluid inclusions suggest mixing between magmatic water and meteoric-derived groundwater. Sulfur and lead isotope compositions of sulfide ore minerals indicate multi-sources for the metallogenetic materials that range from the crust to the mantle. On the basis of the above synthetic studies, genesis of the gold ore deposits in the eastern Tianshan Mountains was approached. From the Middle-Late Hercynian to Early Indosinian, geodynamic regime of the region was changing from the collisional compression to the post-collisional extension. During the period, magmas were derived from the crust and the mantle and carried metallogenetic materials. Magma intrusion in the upper crust released the magmatic fluids, and drove circulation of groundwater. Mixing of magmatic fluid with groundwater, and extraction of metallogenetic materials from the country rocks are the mechanism for the gold ore formation in the eastern Tianshan Mountains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Samples from carbonate wall-rocks, skarn, ore of skarn type, later calcite vein, and ore of porphyry type in Shouwangfen copper deposit district were collected. Systematic study was carried out on carbon, oxygen, rubidium, strontium and sulfur isotope compositions of carbonates and sulfides in these samples. The first Isochron dating by the Rb-Sr isotopes in chalcopyrite of ore sub-sample was done as well. The following conclusions were obtained. The age (113.6±4.3Ma), obtained by Rb-Sr isotope isochron dating of chalcopyrite and pyrite from sub-sample of skarn ores, probably represents the true mineralization age of skarn ores. That demonstrates the genetic relationship between granodiorite in Shouwangfen complex and skarn copper ores. On the other hand, the Rb-Sr isochron age (73±15Ma) of chalcopyrite from porphyry ores is a little incredible because of bad synthesizing evaluation. But combined with other age data of igneous rocks, it implies the possibility of hydrothermal mineralization in connection with magma activity during the fourth period of Yanshanian in Hebei Province, even in the whole northern edge of Huabei continental block. Together from structure analysis of sulfide sub-samples, from pretreating preccedure of Rb-Sr isotope isochron and its' valuating, we found out that Rb-Sr isotope isochron of sulfide sub-samples is influenced by the crystal structure of sulfides. That is, sulfide ores with very big crystals are not suitable for sub-sample isochron. Carbon, oxygen, sulfur and strontium compositions, of different minerals in these two kinds of ores, imply that the ore-forming hydrothermal fluids were probably derived from magma deep under the crust. The calcite ~(87)Sr/~(86)Sr ratios from the porphyry are consistent to the initial 87Sr/86Sr ratio of the Rb-Sr isochron of chalcopyrite and pyrite in the skarn ore, indicating that these two kinds of ores have the same source characteristic, although the porphyry deposit was formed probably 40 million years later than the skarn one according to our dating results. Skarn and skarn ores are usually considered as interaction product between carbonate wall-rocks and magmatic fluids, but the carbon of the sedimentary carbonate seems not involved in the skarn ores. Considering the connection of magmatic processes and hydrothermal ore formation in the Shouwangfen district, particularly, the spatial distribution of skarn-type and porphyry-type ores, it is possible that the Shouwangfen ore district corresponds to a hydrothermal ore-forming system, which was promoted by high-intruding magmatic rocks. Systematic stable isotopic research can help to reveal the upper part of this hydrothermal ore-forming system, which mainly related to heated and circulating meteoric water, and the lower part principally related to ascending magmatic fluids. Both skarn and porphyry ore-bodies are formed by up-intruding magmatic fluids (even more deep mantle-derived fluids).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are four chapters in this dissertation. The first chapter briefly synthesizes the basic theories, methods and present-day applying situation of environmental magnetism. The second chapter probes into the magnetic mineral diagenesis in the post-glacial muddy sediments from the southeastern South Yellow Sea and its response to marine environmental changes, using the muddy sediment of Core YSDP103 formed in the shelf since about 13 ka BP. The third chapter illustrates the high-resolution early diagenetic processes by investigating the rapidly deposited muddy sediments during the last 6 ka in Cores SSDP-102 and SSDP-103 from the near-shore shelf of Korea Strait. The fourth chapter presents the results of detailed rock magnetic investigation of the surface sediments from the fine-grained depositional area on the outer shelf of the East China Sea in an attempt to provide environmental magnetic evidence for the provenance of the fine-grained deposit. Core YSDP103 was retrieved in the muddy deposit under the cold eddy of the southeastern South Yellow Sea, and the uppermost 29.79 m core represents the muddy sediments formed in the shelf since about 13 ka BP. The lower part from 29.79 to 13.35 m, called Unit A2, was deposited during the period from the post-glacial transgression to the middle Holocene (at about 6 ~(14)C ka BP) when the rising sea level reached its maximum, while the upper part above 13.35 m (called Unit Al) was deposited in a cold eddy associated with the formation of the Yellow Sea Warm Current just after the peak of post-glacial sea level rise. For the the uppermost 29.79 m core, detailed investigation of rock-magnetic properties and analyses of grain sizes and geochemistry were made. The experimental results indicate that the magnetic mineralogy of the core is dominated by magnetite, maghemite and hematite and that, except for the uppermost 2.35 m, the magnetic minerals were subject to reductive diagenesis leading to significant decline of magnetic mineral content and the proportion of low-coercivity component. More importantly, ferrimagnetic iron sulphide (greigite) is found in Unit A2 but absent in Unit Al, suggesting the control of marine environmental conditions on the magnetic mineral diagenesis. Magnetic parameters show abrupt changes across the boundary between the Unit Al and A2, which reflects a co-effect of environmental conditions and primary magnetic components of the sediments on the diagenesis. Alternating zones of high and low magnetic parameters are observed in Unit A2 of Core YSDP103, which is presumably due to periodic changes of the concentration and/or grain size of magnetic minerals carried into the study area. Cores SSDP-102 and SSDP-103, two studied sediment cores from the Korea Strait contain mud sequences (14 m and 32.62 m in thickness) that were deposited during the last 6,000 years. Analyses of grain sizes and geochemistry of the cores have demonstrated that the sediments have uniform lithology and geochemical properties, however, marked down-core changes in magnetic properties suggest that diagenesis has significantly impacted the magnetic properties. An expanded view of early diagenetic reactions that affect magnetic mineral assemblages is evident in these rapidly deposited continental shelf sediments compared to deep-sea sediments. The studied sediments can be divided into four descending intervals, based on magnetic property variations. Interval 1 is least affected by diagenesis and has the highest concentrations of detrital magnetite and hematite, and the lowest solid-phase sulfur contents. Interval 2 is characterized by the presence of paramagnetic pyrite and sharply decreasing magnetite and hematite concentrations, which suggest active reductive dissolution of detrital magnetic minerals, the absolute minimum abundance of magnetite is reached at the end of this interval. Interval 3 is marked by a progressive loss of hematite with depth, and at the base of this interval, 82% to 88% of the hematite component was depleted and the bulk magnetic mineral concentration was reduced to the lowest value in the entire studied mud section. Interval 4 has an increasing down-core enhancement of authigenic greigite, which is interpreted to have formed due to arrested pyritization resulting from consumption of pore water sulfate with depth. This is the first clear demonstration from an active depositional environment for a delay of thousands of years for acquisition of a magnetization carried by greigite. This detailed view of diagenetic processes in continental shelf sediments suggests that studies of geomagnetic field behavior from such sediments should be conducted with care. Paleoceanographic and paleoclimatic studies based on the magnetic properties of shelf sediments with high sedimentation rates like those in the Korea Strait are also unlikely to provide a meaningful signature associated with syn-depositional environmental processes. The rock magnetic properties of the surface sediments from the fine-grained depositional area on the outer shelf of the East China Sea, an area surrounded by sands, are investigated with a view to providing information on the sediment provenance. Multiple magnetic parameters such as magnetic susceptibility (%), anhysteretic remanent magnetization (ARM), saturation rernanent magnetization (SIRM), coercivities of SIRM (Her), and S ratios (relative abundance of low-coercivity magnetic minerals) are measured for all 179 surface samples, and partial representative samples are examined for their magnetic hysteresis parameters, temperature-dependence of magnetic susceptibility and x-ray diffraction spectra. Our research indicates that the magnetic mineralogy is dominated by magnetite with a small amount of hematite and is primarily of pseudo-single domain (PSD) to multidomain (MD) nature with a detrital origin. In the surface sediments, the granulometry of magnetic fractions is basically independent of grain sizes of the sediment containing the magnetic grains, and the composition of magnetic minerals remains almost homogeneous, that is, with a relatively constant ratio of low to high coercivity fraction throughout the area. The magnetic concentration in the study area generally decreases to the east or southeast accompanied by magnetic-particle fining to the east or to the northeast. The geographic pattern of magnetic properties is most reasonably explained by a major source of sediment jointly from the erosion of the old Huanghe River deposit and the discharge of the Changjiang River. The rock magnetic data facilitate understanding of the transport mechanism of fine-grained sediments in the outer shelf of the East China Sea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Data on seawater carbon isotope in the Mesoproterozoic and Neoproterozoic is abundant. However, the sulfur isotopic age curve of seawater sulfates determined through the analysis of sulfur isotopic composition of marine evaporite is uncertain in the Mesoproterozoic and Neoproterozoic since evaporites are generally rare in Precambrian. The Mesoproterozoic and Neoproterozoic Carbonate Formations preserve not only the carbon isotopic records, but also the sulfur isotopic records of coeval seawater in the Huabei Platform and the Yangtze Platform, China. Sulfur isotopic composition can be determined by the extraction of trace sulfate from carbonate samples. Successive measurements of sulfur and carbon isotopic compositions of carbonate samples from the Mesoproterozoic and Neoproterozoic strata in the Huabei Platform and the Yangtze Platform was accomplished through the extracting of trace sulfate from carbonates. Sulfur and carbon isotopic compositions of coeval seawater were obtained from analytical results of sulfur and carbon isotopes of the same sample without diagenetic alteration. The high-resolution age curve of sulfur isotope given in this paper may reflect the trend of variations in sulfur isotope composition of seawater sulfates during the Mesoproterozoic and Neoproterozoic. It can be correlated with the characteristics of variation in age curve of carbon isotope of coeval seawater carbonates. The δ34S values of seawater varied from +10.3-37.0‰ during the Mesoproterozoic, which took on oscillated variation on the whole. The δ34S values took on high values in the Mesoproterozoic Chuanlinggou stage, Tuanshanzi stage Tieling stage and in Neoproterozoic Jing'eryu stage. The average of those was about +30‰. The sulfates have low δ34S values in the Mesoproterozoic Yangzhuang stage and Hongshuizhuang stage, The average of those was all lower than +20‰. There occured large-amplitude changs in δ34S values of seawater during the Mesoproterozoic. Large-amplitude oscillate of 534S values occured in the intervals of 1600~1400Ma and 1300~1200Ma. The δ13C values of seawater are mostly negative in Changcheng stage of late Paleoproterozoic, -0 ± 1‰ range in Jixian stage of Mesoproterozoic , and the positive 2±2‰ commonly in early Neoproterozoic Jing'eryu stage. From 1000 Ma to 900 Ma, about 108 years interval of oceanic 513C record is shortage. At the end of Paleoproterozoic (1700 - 1600 Ma), the oceanic 813C values change from -3‰ to 0‰, but strongly oscillate near 1600 Ma. Two larger variations of seawater 513C values occur in the Mesoproterozoic: one is a cycle of about 4%o happens at ca. 1400 Ma; another is rise from >2‰ to>5‰ at ca. 1250 Ma and then become stable at the near 1000 Ma. There appears a large positive excursion over +20‰ in 534S value of ancient seawater sulfates in the early Doushantuo stage. Simultaneously, 8 C values of ancient seawater occur a positive excursion reaching 10‰. These allow δ4S values and 513C values to reach high values of+51.7‰ and +6.9‰, respectively. The range of variation in 834S values of seawater is relatively narrow and 513C values are quite high in the middle Doushantuo stage. Then, δ34S values of seawater become oscillating, the same happens in δ13C values. Negative excursions in 834S values and 813C values occur simultaneously at the end of the Doushantuo stage, and the minimum of δ34S values and δ13C values dropped to -11.3‰ and -5.7‰, respectively. The ancient seawater in the Dengying stage has high δS values and δ13C values. Most of the δ34S values of the trace sulfate samples varied between +23.6‰ and +37.9‰ except two boundaries of the Dengying Formation, and the S13C values of the carbonate samples of the Dengying Formation varied between +0.5‰ and +5.0‰. There appeared large negative excursion in 834S values and δ13C values of ancient seawater at the bounder of Precambrian-Cambrian. The isotopic characteristics of sulfur and carbon implicated that the organic productivity and isotopic fractionation caused by biology were low and the palaeoceanic environment was quite unstable during the Mesoproterozoic. The increase and subsequent oscillation of seawater δ13C value occurred from 1700 to 1600 Ma and near 1300 Ma may be responsible to the two global tectonic events happened at coeval time. The characteristics of variation in sulfur and carbon isotopes of ancient seawater imply strong changes in oceanic environment, which became beneficial to inhabitation and propagation of organism. The organic production and the burial rate of organic carbon once reached a quite high level during the Doushantuo stage. However, the state of environment became unstable that means the global climate and the environment possibly were fluctuating and reiterating after the global glaciation. The negative excursions of S34S values and δ13C values occurring at the end of the Doushantuo stage represent a global event, which might be relative to the oxidation of deep seawater. The isotopic characteristics of sulfur and carbon implicated that there were a high organic productivity and a high burial rate of organic carbon in the Dengying stage. It is obvious that the palaeoceanic environment in Dengying stage was stable corresponding and beneficial for biology to inhabit and propagate except for the two boundaries. The tendency of sulfur and carbon isotopic variations maybe resulted from the gradual oxygenation of ocean environment during the Dengying stage. It has been reported that the secular variations of the sulfur isotopic compositions in seawater was negative correlated with that of carbon isotopic compositions. However, our results show that it is not the case. They were negatively correlated in some intervals and positively in some other intervals of the Mesoproterozoic and Neoproterozoic. The difference in correlation may be associated with the changes in conditions of redox in oceanic environment, e.g. sharp change of the oxidation-reduction interface. The strong changes in global environment may induce the abnormality to occur in the biogeo chemical S and C cycles in the ocean and accordingly sharp Variations in isotopic composition of seawater sulfur and carbon during the Mesoproterozoic and Neoproterozoic. Simultaneously, the global tectonism caused large changes of 87Sr/86Sr ratios. The leading factor that causes the variation in isotopic composition is different in the different intervals of the Mesoproterozoic and Neoproterozoic. Thus, there may exist different models of the biogeochemical S and C cycles in the ocean during the Mesoproterozoic and Neoproterozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Sawuer gold belt is located in the transition belt between Siberian plate and Kazakhstan-Junggar plate. Based on the geological and geochemical studies on the Kuoerzhenkuola and Buerkesidai gold deposits, in Sawuer gold mineralization belt, the time-space structure of mineralization and mineralizing factor are studied, the metallogenic regularity is concluded in thistheses. The ore bodies have the regularity that orebody are of the extensive and compressive in the sallow and depth of volcanic apparatue, respectively, and the vertical extension of orebody is more intensive than the horizontal extension. The gold deposits were controlled by the fractures of volcanic apparatus and regional faults, and featured by the hydrothermal alteration and metasomatism type disseminated mineralization and filling type vein mineralization. By virtue of the geological and geochemical studies on the two deposits that the formation of the two deposits are significantly related to the volcanic activity, we propose new ideas about their origin: (1) the two deposits are located in the same strata, and share the same genesis. (2) both of two deposits are volcanogenic late-stage hydrothermal gold deposits. Based on mapping of volcanic lithofacies and structure for the first time, it is discovered that a volcanic apparatus existed in the study area. Volcanic-intrusive activity can be divided into three cycles and nine lithofacies. where the two deposits are hosted in the same volcanic cycle, in this case, the wall-rock should belong to the same strata. The 40Ar-39Ar age method is employed in this work to analyze the fluid inclusions of quartz in the ore bodies from Kuoerzhenkuola and Buerkesidai gold deposits. The results show that the main mineralization occurred in 332.05 + 2.02-332.59 + 0.5IMa and 335.53 + 0.32Ma~336.78 + 0.50Ma for Kuoerzhenkuola and Buerkesidai gold deposits respectively, indicating that the two deposits are formed almost at the same time, and the metallogenic epoch of the tow deposits are close to those of the hosting rocks formed by volcanic activity of Sawuer gold belt. This geochronological study supplies new evidence for determining the timing of gold mineralization, the geneses of gold deposits? and identifies that in Hercynian period, the Altai developed tectonic-magmatic-hydrothermal mineralization of Early Carboniferous period, except known two metallogenic mineralization periods including tectonic-magmatic-hydrothermal mineralization of Devonian period and Late Carboniferous-Permian period respectively. The study of fluid inclusions indicates that the ore-forming fluid is a type of NaCl-HbO fluid with medium-low temperature and low salinity, Au is transported by the type of auric-sulfur complex (Au (HS)2-), the ore is formed in reduction condition. Hydrogen and oxygen isotopes of fluid inclusions in the major mineralizating stage show that the solutions mainly originated from magmatic water and meteoric water. The fluid mixing and water-rock reaction cause the deposition of Au. The helium and argon isotope compositions of fluid inclusions hosted in pyrite have been measured from Kuoerzhenkuola and Buerkesidai gold deposits in Sawuer gold belt. The results show that the ore-forming fluids of two deposits possessed the same source and is a mixture of mantle- and partial meteoric water-derived fluid, and the reliability of He and Ar isotopic compositions in Hercynian period is discussed. Isotopic studies including H, O, He, C, S, Pb and Sr reveal the same result that the ore-forming fluids of two deposits possessed the same source: the water derived mainly from magmatic water, partially from meteoric water; the mineralizers and ore materials derived mainly from mantle beneath the island arc, and partially from crust. The ore-forming fluids of two deposits are a mixture of mantle-derived fluids being incorporated by crust-derived fluid, and shallow partial meteoric water. Based on these results, it is proposed that the geneses of the two gold deposits are the same, being volcanogenic late-stage hydrothermal gold deposits that the ore-forming fluids filled in fractures of volcanic apparatus and metasomatized the host rocks in the volcanic apparatus. It is the first time we carried out the geophysical exploration, that is, the EH-4 continuous electrical conductivity image system measurement, the results show that relative large-size mineralizing anomalies in underground have been discovered.lt can confirm the law and genesis of the deposits mentioned above, and change the two abandoned mines to current large-size potenial exploration target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Starting with the research status of bio-metallogenesis of Tl deposits and their geology, this work deals with the geological background of Tl enrichment and mineralization and the mechanism of bio- metal-logenesis of Tl deposits, as exemplified by Tl deposits in the low-temperature minerogenetic province. This research on the bio-metallogenesis of Tl deposits is focused on the correlations between bio-enrichment and Tl, the enrichment of Tl in micro-paleo-animals in rocks and ores, bio-fossil casts in Tl-rich ores, the involvement of bio-sulfur in minerogenesis and the enrichment of bio-genetic organic carbon in Tl ores. Thallium deposits have experienced two ore-forming stages: syngenetic bio- en-richment and epigenetic hydrothermal reworking (or transformation). Owing to the intense epigenetic hydrothermal reworking, almost no bio-residues remain in syngenetically bio-enriched Tl ores, thereby the Tl deposits display the characteristics of hydrothermally reoworked deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

研究区域降水样品pH值的分布范围为3.64-7.20,pH年均值为4.45。SO4、NO3、NH4、Ca、H是降水中主要的阴、阳离子。降水中SO4对降水酸度的贡献逐渐降低,而NO3的贡献则显著增加。SO4、NH4、Ca、H、NO3的沉降通量相对较大,其它离子则相对较小,同时降水离子成分沉降通量的季节变化非常明显。SO4和NO3、Ca和Mg以及Na和Cl表现出较好的相关关系,另外Ca和SO4、Mg和SO4以及Mg和NO3等酸、碱性离子之间也存在较好的相关性,但H与其它离子间并没有表现出明显的相关关系。降水中SO4、NH4、NO3和F主要来自人为活动的影响,Ca、k和Mg主要来自土壤、沙尘等地壳来源,Na、Cl属于典型的海盐性成分。 浙江中部地区大气降水硫同位素δ34S值的变化范围为+0.53‰-+14.23‰,平均值+5.04‰,区域内各地大气降水硫同位素组成基本一致。大气SO2的δ34S值变化范围在+0.95‰-+7.50‰之间,年均值为+4.73‰,气溶胶δ34S值变化范围则在+6.39‰-+9.83‰之间,年均值为+8.09‰。降水和大气SO2的δ34S值存在冬季高夏季低的季节性变化特征,同位素平衡分馏引起的温度效应和夏季生物成因硫的大量释放是造成季节性变化的主要控制因素。降水中人为来源硫的相对贡献约为53%-91%,年平均为73%,生物成因硫的相对贡献约为8%-44%,年平均为26%。远距离传输硫是研究区域降水中另一个非常重要的硫源,其相对贡献约为27%-44%。大气SO2氧化反应中多相氧化处于相对重要的地位,均相氧化在氧化反应机制中也有其不可低估的作用。研究区域大气环境的相对湿度对大气SO2的氧化机制有着重要的影响。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

贵州的乌江流域属典型的喀斯特地貌,也是我国严重的酸雨区之一。酸沉降可以导致土壤中盐基离子的流失并释放出具有植物毒性的元素,对植被和生态造成破坏。即使在酸沉降停止后,土壤的退化也会持续,pH值仍可继续降低。因此,加强乌江流域的酸沉降对土壤及生态系统破坏的研究十分必要。乌江中上游地区广泛分布高硫煤和矿床硫化物,煤中的还原态硫化物(主要是黄铁矿)和矿床硫化物经过氧化风化会产生大量的溶解态金属和H2SO4,在污染环境的同时会大大加速碳酸盐岩的化学侵蚀。 本研究在导师刘丛强研究员主持的中国科学院知识创新工程重要方向重大项目(喀斯特地区(贵州乌江流域)物质的水文地球化学循环及其环境效应,批准号:KZCX2-105;乌江流域典型喀斯特土壤-植被生态系统生源要素生物地球化学研究,批准号:KZCX3-SW-140)课题的支持下,选择贵州喀斯特地区的典型河流为研究对象,利用化学质量平衡、同位素地球化学研究手段,探讨了硫酸风化碳酸盐岩对河水化学组成的影响,溶解硫酸盐的来源及硫同位素组成的时空变化,定量计算了丰水期乌江流域硫酸风化碳酸盐岩的侵蚀速率及其对大气CO2释放的影响,并对土壤总硫和硫酸盐的生物地球化学循环进行了同位素示踪研究。获得的主要结论揭示了水-岩作用和人类活动对硫的生物地球化学循环的控制机理,以及硫循环在碳酸盐岩化学风化中的作用,为了解喀斯特地区硫的循环演化及其环境效应提供了重要的基础科学依据。主要结论如下: 硫酸侵蚀碳酸盐岩对河水化学组成的影响 乌江枯、丰水期河水SO42−平均浓度分别为0.65mmol/L和0.48mmol/L,占阴离子总量的25%以上。干流河水SO42−浓度具有从上游到下游逐渐降低的趋势,支流河水SO42−浓度具有明显的区域性差异特征,枯水期上游和下游地区支流的SO42−平均浓度分别为0.80mmol/L和0.26mmol/L,丰水期河水也有类似的特征。SO42−、NO3−、Cl−与Na+浓度比值的相互关系表明河水SO42−具有人为来源。沅江水系河水SO42−含量远低于乌江河水,枯水期平均浓度0.22mmol/L,丰水期平均0.14mmol/L。 乌江流域不同来源H2SO4参与下的碳酸盐岩风化是影响河水化学组成最主要的因素。舞阳河水中的溶质主要来自H2CO3风化白云岩,不存在硫酸风化碳酸盐岩的迹象。清水江河水离子组成则同时受到H2CO3、H2SO4风化碳酸盐岩和H2CO3风化硅酸盐的影响。由此可见,喀斯特地区不同河流的河水化学组成受H2SO4风化碳酸盐岩的影响是不同的。 水-岩作用模拟表明:乌江枯水期河水的CSI在−0.2 ~ 1之间,绝大多数河水处于对CaCO3过饱和状态,丰水期河水的CSI较枯水期平均高0.3,CaCO3全部过饱和。河水PCO2,river相对大气PCO2,atm一般是过饱和的。因此,喀斯特地区河水即具有沉积性又具有向大气释放CO2的趋势。舞阳河水方解石和白云石在枯、丰水期全部过饱和,DSI平均值在两季均远高于CSI,这与舞阳河流域分布着大量的白云岩有关。而清水江大部分河水的方解石和白云石处于不饱和状态。流域不同的地质背景决定了河水中方解石和白云石的饱和状态,在同一地质背景条件下又取决于河水中的CO2分压。 扣除乌江丰水期河水化学组成中H2SO4溶解碳酸盐岩的贡献之后,部分河水由对方解石和白云石过饱和变为不饱和,溶解沉淀性质发生了根本的改变。由此可见,H2SO4风化碳酸盐岩通过改变河水的化学组成,对河水的化学稳定性也存在很大影响。 河水硫同位素地球化学与碳酸盐岩侵蚀 枯水期乌江河水硫同位素δ34S值的变化范围为−15.7‰ 到18.9‰,宽广的δ34S值范围反映了不同河段汇入的SO42−来源于流经具有不同同位素组成特征地质背景的支流。丰水期δ34S值的变化范围小于枯水期,在−11.5‰ 到8.3‰之间。两个季节河水SO42−的δ34S值均随着SO42−浓度的增加而降低。乌江硫酸盐的硫同位素组成具有明显的季节性变化,丰水期干流河水的δ34S值在−6.7‰ ~ −3.9‰之间,平均值较枯水期低3‰。支流河水的硫同位素组成具有明显的区域性差异。舞阳河河水富集34S,清水江河水富集32S,硫同位素组成的季节变化和支流差异远不如乌江明显。 硫同位素示踪显示:乌江上游河水硫酸盐主要来自煤中黄铁矿的氧化、矿床硫化物氧化及雨水;下游河水硫酸盐的硫同位素组成主要介于雨水和蒸发岩端元之间,煤中黄铁矿氧化的贡献较少。不同端元的硫同位素组成表明:丰水期水量增加时,煤中黄铁矿氧化来源的硫酸盐的贡献增加,导致了乌江河水δ34S值的降低。雨水δ34S值季节性变化对河水硫同位素组成的季节性变化的影响是次要的。 乌江河水向贵州省外输出的SO42−通量为170×1010g/a,丰水期占全年SO42−输出总量的72%,上游地区输出的SO42−占年输出总量的80%。煤中黄铁矿风化、雨水、矿床硫化物风化、蒸发岩溶解对丰水期乌江河水SO42-的贡献分别为45%、27%、24%和4%。硫化物氧化产生H2SO4,而后H2SO4侵蚀碳酸盐岩,这是研究区内两个非常重要的硫循环过程。丰水期H2SO4侵蚀碳酸盐岩的速率为35.1t/ (km2•a),约合17.5mm/ka。总的CO2释放通量约为8.1 t/ (km2•a)。通过推导丰水期乌江流域碳酸盐岩侵蚀方程可知,丰水期乌江流域碳酸盐岩的侵蚀有52%是由H2SO4风化造成的。 喀斯特流域土壤硫的生物地球化学 黄壤的总硫含量一般小于0.1%,而石灰土的总硫含量全部大于0.1%, 同一剖面同样深度黄壤总硫含量夏季生长期高于冬季休眠期,但是石灰土则恰恰相反。一般情况下,土壤总硫含量首先与土壤类型有关,其次可能受到植被的影响。即使是同一土壤类型,随着剖面深度的增加总硫含量变化趋势也并不一致。 土壤无机硫酸盐的含量与土壤类型密切相关,黄壤SO42−含量明显高于石灰土。黄壤表层土硫酸盐形态硫占总硫的2.4% ~ 6.4%,随着剖面加深土壤硫酸盐形态硫的含量出现先增加后降低的趋势,最高可占总硫的20%以上,这种现象应该是铁、铝氧化物或氢氧化物对硫酸盐的吸附造成的。同样是黄壤,也可能由于上覆植被的不同造成不同剖面土壤硫酸盐在含量上的差异,或同一剖面不同季节含量上的差异。石灰土硫酸盐形态硫在总硫中的百分含量不超过3%,而且易受淋溶而流失,即使在有植被覆盖的情况下也是如此。 所有样品总硫的δ34S值均为正值且总是大于同层SO42−的δ34S值。随着黄壤剖面的加深δ34S值呈逐渐增加的趋势,有机硫循环过程不断富集34S可能是产生这种现象的原因。 硫同位素组成表明黄壤剖面表层土SO42−应来源于大气沉降。夏季表层土SO42−的δ34S值稍高于冬季,明显高于贵阳夏季大气降水的硫同位素组成,可能是大气总沉降的反映,也可能是不同季节土壤有机硫的矿化水平的不同造成的。黄壤剖面无论冬季还是夏季SO42−均随剖面的加深逐渐富集34S。在剖面上层SO42−的δ34S值与SO42−含量正相关,可能是有机硫矿化生成的SO42−加入的结果。下层土壤硫酸盐δ34S值与含量明显反相关,可能是硫酸盐还原菌发生作用导致了较大的同位素分馏。 从乌江上游至下游,石灰土表层土壤SO42−的硫同位素逐渐富集32S。硫同位素组成表明中、下游石灰土SO42−的来源很可能是大气降水,而上游样品还存在矿山硫的来源。 土壤无机硫酸盐对乌江河水硫酸盐的贡献还不明确,但它不应是乌江河水硫酸盐的主要来源。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

湖泊生态系统是陆地水体生态系统的重要组成部分。随着社会经济的不断发展,各种人为因素对湖泊生态系统的影响日益突出,打破了其自然演变规律,诸如 “二次污染”、水体富营养化、重金属污染等环境问题接踵而来。而铁是水生生态系统初级生产力所必需的重要微量营养元素之一,在一定的条件下可以控制和影响浮游藻类的生长速度和种类;而且,铁的氧化还原敏感性很强,其价态的改变往往会影响其它相关重金属的迁移和转化。因此,湖泊生态系统中铁的生物地球化学循环研究具有非常重要的意义。近年来的研究显示,铁同位素分析技术可以用于各种生物作用和非生物作用过程的研究,在海洋和河流生态系统中已有广泛的应用,而对湖泊生态系统的研究则鲜见报导。乌江流域中等富营养化的湖泊――红枫湖和贵阳西南郊矿化程度较高的湖泊――阿哈湖是研究湖泊生态系统中铁生物地球化学循环的理想场所。本文选取这两个性质不同的湖泊为研究对象,运用硫同位素、铁同位素及重金属和营养盐等地球化学方法手段,对两湖流域内硫酸盐的来源、硫同位素的季节和剖面变化特征、铁的来源及铁同位素组成的季节和剖面变化特征及其控制和影响因素等进行了研究和探讨,进一步完善了铁同位素分馏机理,为深化理解和研究湖泊生态系统中铁和硫的生物地球化学循环提供一定的科学依据。论文所获的主要认识总结如下: 两湖流域内湖水与河水的硫酸盐硫同位素地球化学 (1)阿哈湖流域和红枫湖流域水体的硫酸盐浓度和δ34S值均有较宽的分布范围。各入湖支流中,受煤矿废水或煤矸石淋溶液污染的河水的δ34S值相对较低(-8.10‰~-14.92‰),而受生活污水影响严重的河水则具有相对较高的δ34S值(-5.68‰~+0.88‰)。相比而言,阿哈湖流域水体纳入了大量的煤矿废水和煤矸石淋溶液,硫污染程度较红枫湖流域更为严重。因此,阿哈湖湖水具有相对较高的硫酸根浓度(平均为2.30 mmol.L-1)和相对较低的δ34S值(平均为-8.10‰),而红枫湖则具有相对较低的硫酸根浓度(平均为0.96 mmol.L-1)和相对较高的δ34S值(平均为-6.80‰)。 (2)阿哈湖湖水中的硫酸盐主要受煤矿废水、煤矸石淋溶液以及雨水等的控制;红枫湖湖水的硫酸盐主要来源于煤中黄铁矿的氧化和雨水输入,土壤硫化物的氧化和蒸发岩的溶解对湖水硫酸盐硫同位素组成的贡献较小。相比之下,雨水对红枫湖湖水硫同位素的影响更为明显。 (3)红枫湖和阿哈湖湖水的硫酸盐的δ34S值均具有明显的剖面变化特征,而且两湖的变化趋势相似,总体表现为,夏秋季节表层湖水和底层湖水的δ34S值相对较高,而冬春季节湖水剖面上下几乎没有变化。湖水硫酸盐浓度也呈现类似的变化特征,这主要与季节性厌氧湖泊夏季分层冬季混和的典型特点有关。夏季湖水分层期间,大量降雨在湖泊表层的滞留使得δ34S值升高而硫酸盐浓度降低,湖泊底部水层中硫酸盐细菌的还原作用使得底层湖水的硫酸盐浓度降低,而δ34S值升高。 两湖流域内铁同位素地球化学 (1)阿哈湖流域各类样品的δ56Fe值分布在-2.03‰~+0.12‰之间,分布范围较宽。其中湖水悬浮颗粒物的δ56Fe值在-1.36‰~-0.03‰之间,整体相对偏负。湖周各支流河水悬浮颗粒物的δ56Fe值在-0.88‰~+0.07‰之间,也相对富集轻的铁同位素;湖底沉积物和孔隙水的δ56Fe值的分布范围分别为-1.75‰~-0.59‰和-2.03‰~+0.12‰;大气颗粒物和浮游藻类的δ56Fe值分别为+0.06±0.02‰和+0.08‰。与阿哈湖相比,红枫湖流域各类样品的δ56Fe值的分布范围相对较窄,在-0.92‰~+0.36‰之间。湖水悬浮颗粒物的δ56Fe值在-0.85‰~+0.14‰之间,河水悬浮颗粒物的铁同位素组成变化范围为-0.89‰~+0.10‰,二者的变化范围相似。红枫湖沉积物的δ56Fe值在-0.18‰~+0.08‰之间,明显比阿哈湖沉积物的铁同位素组成偏正;而对应孔隙水的铁同位素组成的变化范围为-0.59‰~-0.24‰,均要比对应沉积物的铁同位素值要低。藻类和鲫鱼鱼肉的δ56Fe值分别为+0.36‰和-0.92‰。 (2)通过对两湖研究区湖水悬浮颗粒物与各输入端员环境样品的铁同位素值的研究表明,湖水悬浮颗粒物的δ56Fe值不仅受各输入端员的控制和影响,湖泊内部相关的生物地球化学过程也对湖水悬浮颗粒物的铁同位素组成变化产生了重要影响。两湖研究区内湖水悬浮颗粒物的铁同位素组成均存在季节变化特征,但受湖泊自身特点的影响,主要控制因素方面存在一定差异。夏季阿哈湖湖水悬浮颗粒物的铁同位素值变幅较大,其变化主要表现在表层和底层。表层因受陆源输入的有机结合态铁的影响而具有较负的δ56Fe值,而大气沉降颗粒物和湖泊表层的浮游藻类的影响并不显著。夏季湖水分层期间,“Ferrous Wheel”铁循环对于界面附近铁同位素的重分配起到了主要的控制和影响作用,湖水悬浮颗粒物的铁同位素值在氧化-还原界面附近达到了极负值。水-沉积物界面附近滞水层中亚铁类硫化物的生成可能也是水-沉积物界面附近水层内颗粒物的δ56Fe值偏负的原因之一。而冬季湖水混和时期,阿哈湖湖水剖面悬浮颗粒物的δ56Fe值的变幅明显减小。与阿哈湖不同,藻类的吸附作用可能在夏季红枫湖上层水体中占有主导地位,其湖水悬浮颗粒物的铁同位素组成随叶绿素水平的降低而逐渐降低。下层湖水悬浮颗粒物的铁同位素组成变化也受“Ferrous Wheel”铁循环的影响,在红枫湖后五剖面 20m 处达到-0.18‰,大坝剖面底层约为-0.46‰,其变幅没有阿哈湖悬浮颗粒物的δ56Fe值大,可能是受到了湖水中大量有机物质的影响。冬季红枫湖后五剖面的变化趋势与夏季相似,上层和下层水体悬浮颗粒物分别受不同影响因素的控制。上层水体悬浮颗粒物的铁同位素变化不明显,与Fe、Al、Mn、Zn、Co等元素的含量呈现良好的正相关关系;而底层水体悬浮颗粒物的δ56Fe值变幅比夏季要大,HW采样点20m处可达-0.85‰,与Fe、Al、Zn、Co等呈现良好的负相关关系,具体影响因素还有待于进一步研究。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

我国西南喀斯特和酸沉降双重背景下的土壤硫循环实际上与碳酸盐岩溶解及土壤质量演化密切相关。目前,国内有关喀斯特地区土壤硫生物地球化学循环的研究还鲜见报道。 本论文以典型喀斯特地区石灰土和黄壤为研究对象,研究自然坡地土壤中硫的赋存状态及其同位素组成特征,硫循环关键微生物硫酸盐还原菌(SRB)的分布特征,结合土壤基本理化参数探讨喀斯特地区土壤中硫的生物地球化学循环的一般过程,得到如下认识:土壤中SO42-还原和有机硫矿化是同步进行的,而SO42-和有机硫的相互转化构成了土壤硫循环的主要内容。通过对比土壤各形态硫含量、SRB及各形态硫同位素组成的垂直分布特征,可以很好的阐释与土壤深度相关的硫循环过程,同时也可以很好的判别土壤内部的SO42-、有机硫和FeS2迁移过程。而影响各形态硫含量、SRB及硫氧化菌(SOB)在土壤中分布的因素不是单一的,与土壤类型、植被状况、土壤基本性质如有机碳、氮含量及pH值及土壤不同深度活性金属离子分布、厌氧状况等多因素的综合作用有关。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mo surface species of molybdenum nitride and their changes under sulfiding conditions were investigated by XRD and XPS. Mo2N was synthesized by temperature-programmed reaction of MoO3, with NH3. The decomposition of the Mo3d spectra gave a Mo3d doubler which corresponded to Modelta+ (2 less than or equal to delta < 4), Mo4+ and Mo5+ Or Mo6+ species. The BE of the Mo species of passivated Mo2N shifted to higher energy level compared with the freshly prepared Mo2N due to the oxidation of Mo nitride during passivation. When Mo2N was contacted for 4 h with a 15% H2S-H-2 mixture at 400 degrees C, the XRD spectra did not reveal any new phase, which indicates a high stability of Mo2N against sulfidation, but XPS data showed the presence of sulfur, including S-0 and S2- species, and a decrease of the N/Mo atomic ratio revealed some changes in surface composition. More than one monolayer of Mo2N was transformed to sulfide. It is probable that the oxygen incorporated during passivation reacted with sulfur and formed a thin layer of molybdenum sulfide on the Mo2N surface. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalysts assembled in emulsions are found to be potentially recoverable and efficient for a number of catalytic reactions. The catalysts composed of polyoxometalate anions and quaternary ammonium cations have been designed and synthesized according to the catalytic reactions and by optimizing the structures of cations and anions. The catalysts act essentially as surfactants, which are uniformly distributed in the interface of the emulsion droplets, and accordingly behave like homogeneous catalysts. The catalysts show remarkable selectivity and activity in the oxidation of sulfur-containing molecules to sulfones in diesel and the selective oxidation of alcohols to ketones, using H2O2 as oxidant. For an example, the catalyst demonstrated over 96% efficiency of H2O2 and similar to 100% selectivity to sulfones for the selective oxidation of sulfur-containing molecules in real diesel. Moreover, the catalysts can be separated and recycled by a simple demulsification and re-emulsification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The desulfurization of thiophene on Raney Ni and rapidly quenched skeletal Ni (RQ Ni) has been studied in ultrahigh vacuum (UHV) by X-ray photoelectron spectroscopy (XPS). The Raney Ni or RQ Ni can be approximated as a hydrogen-preadsorbed polycrystalline Ni-alumina composite. It is found that thiophene molecularly adsorbs on Raney Ni or RQ Ni at 103 K. At 173 K, thiophene on alumina is desorbed, while thiophene in direct contact with the metallic Ni in Raney Ni undergoes C-S bond scission, leading to carbonaceous species most probably in the metallocycle-like configuration and atomic sulfur. On RQ Ni, the temperature for thiophene dissociation is about 100 K higher than that on Raney Ni. The lower reactivity of RQ Ni toward thiophene is tentatively attributed to lattice expansion of Ni crystallites in RQ Ni due to rapid quenching. The existence of alumina and hydrogen may block the further cracking of the metallocycle-like species on Raney Ni and RQ Ni at higher temperatures, which has been the dominant reaction pathway on Ni single crystals. By 473 K, the C Is peak has disappeared, leaving nickel sulfide on the surface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis describes a broad range of experiments based on an aerosol flow-tube system to probe the interactions between atmospherically relevant aerosols with trace gases. This apparatus was used to obtain simultaneous optical and size distribution measurements using FTIR and SMPS measurements respectively as a function of relative humidity and aerosol chemical composition. Heterogeneous reactions between various ratios of ammonia gas and acidic aerosols were studied in aerosol form as opposed to bulk solutions. The apparatus is unique, in that it employed two aerosol generation methods to follow the size evolution of the aerosol while allowing detailed spectroscopic investigation of its chemical content. A novel chemiluminescence apparatus was also used to measure [NH4+]. SO2.H2O is an important species as it represents the first intermediate in the overall atmospheric oxidation process of sulfur dioxide to sulfuric acid. This complex was produced within gaseous, aqueous and aerosol SO2 systems. The addition of ammonia, gave mainly hydrogen sulfite tautomers and disulfite ions. These species were prevalent at high humidities enhancing the aqueous nature of sulfur (IV) species. Their weak acidity is evident due to the low [NH4+] produced. An increasing recognition that dicarboxylic acids may contribute significantly to the total acid burden in polluted urban environments is evident in the literature. It was observed that speciation within the oxalic, malonic and succinic systems shifted towards the most ionised form as the relative humidity was increased due to complete protonisation. The addition of ammonia produced ammonium dicarboxylate ions. Less reaction for ammonia with the malonic and succinic species were observed in comparison to the oxalic acid system. This observation coincides with the decrease in acidity of these organic species. The interaction between dicarboxylic acids and ‘sulfurous’/sulfuric acid has not been previously investigated. Therefore the results presented here are original to the field of tropospheric chemistry. SHO3-; S2O52-; HSO4-; SO42- and H1,3,5C2,3,4O4-;C2,3,4O4 2- were the main components found in the complex inorganic-organic systems investigated here. The introduction of ammonia produced ammonium dicarboxylate as well as ammonium disulfite/sulfate ions and increasing the acid concentrations increased the total amount of [NH4+].