945 resultados para stable ergodicity
Resumo:
The stable isotopic composition of fossil resting eggs (ephippia) of Daphnia spp. is being used to reconstruct past environmental conditions in lake ecosystems. However, the underlying assumption that the stable isotopic composition of the ephippia reflects the stable isotopic composition of the parent Daphnia, of their diet and of the environmental water have yet to be confirmed in a controlled experimental setting. We performed experiments with Daphnia pulicaria cultures, which included a control treatment conducted at 12 °C in filtered lake water and with a diet of fresh algae and three treatments in which we manipulated the stable carbon isotopic composition (δ13C value) of the algae, stable oxygen isotopic composition (δ18O value) of the water and the water temperature, respectively. The stable nitrogen isotopic composition (δ15N value) of the algae was similar for all treatments. At 12 °C, differences in algal δ13C values and in δ18O values of water were reflected in those of Daphnia. The differences between ephippia and Daphnia stable isotope ratios were similar in the different treatments (δ13C: +0.2 ± 0.4 ‰ (standard deviation); δ15N: −1.6 ± 0.4 ‰; δ18O: −0.9 ± 0.4 ‰), indicating that changes in dietary δ13C values and in δ18O values of water are passed on to these fossilizing structures. A higher water temperature (20 °C) resulted in lower δ13C values in Daphnia and ephippia than in the other treatments with the same food source and in a minor change in the difference between δ13C values of ephippia and Daphnia (to −1.3 ± 0.3 ‰). This may have been due to microbial processes or increased algal respiration rates in the experimental containers, which may not affect Daphnia in natural environments. There was no significant difference in the offset between δ18O and δ15N values of ephippia and Daphnia between the 12 and 20 °C treatments, but the δ18O values of Daphnia and ephippia were on average 1.2 ‰ lower at 20 °C than at 12 °C. We conclude that the stable isotopic composition of Daphnia ephippia provides information on that of the parent Daphnia and of the food and water they were exposed to, with small offsets between Daphnia and ephippia relative to variations in Daphnia stable isotopic composition reported from downcore studies. However, our experiments also indicate that temperature may have a minor influence on the δ13C, δ15N and δ18O values of Daphnia body tissue and ephippia. This aspect deserves attention in further controlled experiments.
Resumo:
Substantial effort has recently been put into the development of climate reconstructions from tree-ring stable carbon isotopes, though the interpretation of long-term trends retained in such timeseries remains challenging. Here we use detrended δ13C measurements in Pinus uncinata tree-rings, from the Spanish Pyrenees, to reconstruct decadal variations in summer temperature back to the 13th century. The June-August temperature signal of this reconstruction is attributed using decadally as well as annually resolved, 20th century δ13C data. Results indicate that late 20th century warming has not been unique within the context of the past 750 years. Our reconstruction contains greater am-plitude than previous reconstructions derived from traditional tree-ring density data, and describes particularly cool conditions during the late 19th century. Some of these differences, including early warm periods in the 14th and 17th centuries, have been retained via δ13C timeseries detrending - a novel approach in tree-ring stable isotope chronology development. The overall reduced variance in earlier studies points to an underestimation of pre-instrumental summer temperature variability de-rived from traditional tree-ring parameters.
Resumo:
SBR759 is a novel polynuclear iron(III) oxide–hydroxide starch·sucrose·carbonate complex being developed for oral use in chronic kidney disease (CKD) patients with hyperphosphatemia on hemodialysis. SBR759 binds inorganic phosphate released by food uptake and digestion in the gastro-intestinal tract increasing the fecal excretion of phosphate with concomitant reduction of serum phosphate concentrations. Considering the high content of ∼20% w/w covalently bound iron in SBR759 and expected chronic administration to patients, absorption of small amounts of iron released from the drug substance could result in potential iron overload and toxicity. In a mechanistic iron uptake study, 12 healthy male subjects (receiving comparable low phosphorus-containing meal typical for CKD patients: ≤1000 mg phosphate per day) were treated with 12 g (divided in 3 × 4 g) of stable 58Fe isotope-labeled SBR759. The ferrokinetics of [58Fe]SBR759-related total iron was followed in blood (over 3 weeks) and in plasma (over 26 hours) by analyzing with high precision the isotope ratios of the natural iron isotopes 58Fe, 57Fe, 56Fe and 54Fe by multi-collector inductively coupled mass spectrometry (MC-ICP-MS). Three weeks following dosing, the subjects cumulatively absorbed on average 7.8 ± 3.2 mg (3.8–13.9 mg) iron corresponding to 0.30 ± 0.12% (0.15–0.54%) SBR759-related iron which amounts to approx. 5-fold the basal daily iron absorption of 1–2 mg in humans. SBR759 was well-tolerated and there was no serious adverse event and no clinically significant changes in the iron indices hemoglobin, hematocrit, ferritin concentration and transferrin saturation.
Resumo:
We present precise iron stable isotope ratios measured by multicollector-ICP mass spectrometry (MC-ICP-MS) of human red blood cells (erythrocytes) and blood plasma from 12 healthy male adults taken during a clinical study. The accurate determination of stable isotope ratios in plasma first required substantial method development work, as minor iron amounts in plasma had to be separated from a large organic matrix prior to mass-spectrometric analysis to avoid spectroscopic interferences and shifts in the mass spectrometer's mass-bias. The 56Fe/54Fe ratio in erythrocytes, expressed as permil difference from the “IRMM-014” iron reference standard (δ56/54Fe), ranges from −3.1‰ to −2.2‰, a range typical for male Caucasian adults. The individual subject erythrocyte iron isotope composition can be regarded as uniform over the 21 days investigated, as variations (±0.059 to ±0.15‰) are mostly within the analytical precision of reference materials. In plasma, δ56/54Fe values measured in two different laboratories range from −3.0‰ to −2.0‰, and are on average 0.24‰ higher than those in erythrocytes. However, this difference is barely resolvable within one standard deviation of the differences (0.22‰). Taking into account the possible contamination due to hemolysis (iron concentrations are only 0.4 to 2 ppm in plasma compared to approx. 480 ppm in erythrocytes), we model the pure plasma δ56/54Fe to be on average 0.4‰ higher than that in erythrocytes. Hence, the plasma iron isotope signature lies between that of the liver and that of erythrocytes. This difference can be explained by redox processes involved during cycling of iron between transferrin and ferritin.
Resumo:
In several forms of beta-thalassemia, mutations in the second intron of the beta-globin gene create aberrant 5' splice sites and activate a common cryptic 3' splice site upstream. As a result, the thalassemic beta-globin pre-mRNAs are spliced almost exclusively via the aberrant splice sites leading to a deficiency of correctly spliced beta-globin mRNA and, consequently, beta-globin. We have designed a series of vectors that express modified U7 snRNAs containing sequences antisense to either the aberrant 5' or 3' splice sites in the IVS2-705 thalassemic pre-mRNA. Transient expression of modified U7 snRNAs in a HeLa cell line stably expressing the IVS2-705 beta-globin gene restored up to 65% of correct splicing in a sequence-specific and dose-dependent manner. Cell lines that stably coexpressed IVS2-705 pre-mRNA and appropriately modified U7 snRNA exhibited up to 55% of permanent restoration of correct splicing and expression of full-length beta-globin protein. This novel approach provides a potential alternative to gene replacement therapies.
Resumo:
The 220 abundantly equipped burials from the Late Iron Age cemetery of Münsingen (420 – 240 BC) marked a milestone for Iron Age research. The evident horizontal spread throughout the time of occupancy laid the foundation for the chronology system of the Late Iron Age. Today the skulls of 77 individuals and some postcranial bones are still preserved. The aim was to obtain information about nutrition, social stratification and migration of the individuals from Münsingen. Stable isotope ratios of carbon, nitrogen and sulphur were analysed. The results of 63 individuals show that all consumed C3 plants as staple food with significant differences between males and females in δ13C and δ15N values. The results indicate a gender restriction in access to animal protein. Stable isotope values of one male buried with weapons and meat as grave goods suggest a diet with more animal proteins than the other individuals. It is possible that he was privileged due to high status. Furthermore, the δ34S values indicate minor mobility. Assuming that the subadults represent the local signal of δ34S it is very likely that adults with enriched δ34S could have migrated to Münsingen at some point during their lives. This study presents stable isotope values of one of the most important Late Iron Age burial sites in Central Europe. The presented data provide new insight into diet, migration and social stratification of the population from Münsingen.
Resumo:
Infant burials in Roman settlements are a common observation. Even though ancient authors provide information many questions remain uncertain. For instance, the burial ritual for stillbirth and infanticide neonates is not specifically mentioned. This study therefore aimed to investigate the application of stable nitrogen (δ15N) and carbon (δ13C) isotopes from neonatal bone collagen in differentiating between a breastfeeding signal and stillbirth or a short survival of less than ten days. For this purpose collagen of 11 human and 14 non-human bones from the Roman settlement Petinesca (1st - 3rd century AD, Switzerland) was extracted and analysed for δ15N and δ13C. Tooth histology was performed for the central incisor and canine of the right mandible in order to investigate the presence of a neonatal line. According to the length of the long bones the age varied between 8.5 lunar months to 2 months ex utero. The stable isotope results provided a breastfeeding signal for all except one individual where the breastfeeding signal was absent. The tooth histological analysis of this individual exhibited no neonatal line. It is concluded that stable isotope analysis could indicate stillbirth or a short survival after birth. The tooth histology confirmed the stable isotope results. Furthermore, this might indicate that the burial ritual did not differentiate between stillbirth and neonates, who died within the time span stated by ancient authors of up to 40 days of age or the appearance of teeth. However, for further justifications additional research is going to be conducted.
Resumo:
Foliar samples were harvested from two oaks, a beech, and a yew at the same site in order to trace the development of the leaves over an entire vegetation season. Cellulose yield and stable isotopic compositions (δ13C, δ18O, and δD) were analyzed on leaf cellulose. All parameters unequivocally define a juvenile and a mature period in the foliar expansion of each species. The accompanying shifts of the δ13C-values are in agreement with the transition from remobilized carbohydrates (juvenile period), to current photosynthates (mature phase). While the opponent seasonal trends of δ18O of blade and vein cellulose are in perfect agreement with the state-of-art mechanistic understanding, the lack of this discrepancy for δD, documented for the first time, is unexpected. For example, the offset range of 18 permil (oak veins) to 57 permil (oak blades) in δD may represent a process driven shift from autotrophic to heterotrophic processes. The shared pattern between blade and vein found for both oak and beech suggests an overwhelming metabolic isotope effect on δD that might be accompanied by proton transfer linked to the Calvin-cycle. These results provide strong evidence that hydrogen and oxygen are under different biochemical controls even at the leaf level.
Resumo:
We explored the extent to which δ13C and δD values of freshwater bryozoan statoblasts can provide information about the isotopic composition of zooids, bryozoan food and surrounding water. Bryozoan samples were collected from 23 sites and encompassed ranges of nearly 30‰ for δ13C and 100‰ for δD values. δ13C offsets between zooids and statoblasts generally ranged from −3 to +4.5‰, with larger offsets observed in four samples. However, a laboratory study with Plumatella emarginata and Lophopus crystallinus demonstrated that, in controlled settings, zooids had only 0–1.2‰ higher δ13C values than statoblasts, and 1.7‰ higher values than their food. At our field sites, we observed a strong positive correlation between median δ13C values of zooids and median δ13C values of corresponding statoblasts. We also observed a positive correlation between median δD values of zooids and statoblasts for Plumatella, and a positive correlation between median δD values of statoblasts and δD values of lake water for Plumatella and when all bryozoan taxa were examined together. Our results suggest that isotope measurements on statoblasts collected from flotsam or sediment samples can provide information on the feeding ecology of bryozoans and the H isotopic composition of lake water.
Resumo:
PURPOSE To compare the initial stability and stability after fatigue of three different locking systems (Synthes(®), Stryker(®) and Medartis(®)) for mandibular fixation and reconstruction. METHOD Standard mandible locking plates with identical profile height (1,5 mm), comparable length and screws with identical diameter (2,0 mm) were used. Plates were fixed with six screws according a preparation protocol. Four point bending tests were then performed using artificial bone material to compare their initial stability and failure limit under realistic loading conditions. Loading of the plates was performed using of a servo hydraulic driven testing machine. The stiffness of the implant/bone construct was calculated using a linear regression on the experimental data included in a range of applied moment between 2 Nm and 6 Nm. RESULTS No statistical difference in the elastic stiffness was visible between the three types of plate. However, differences were observed between the systems concerning the maximal load supported. The Stryker and Synthes systems were able to support a significantly higher moment. CONCLUSION For clinical application all systems show good and reliable results. Practical aspects such as handling, possible angulation of screw fixation, possibility of screw/plate removal, etc. may favour one or the other plating system.